ex
, ey
, and ez
in the stokes
package
<- e(1,3)
ex <- e(2,3)
ey <- e(3,3) ez
Convenience objects ex
, ey
, and ez
are discussed here. Elementary forms dx
, dy
and dz
are discussed in dx.Rmd
.
The dual basis to \((dx,dy,dz)\) is, depending on context, written \((e_x,e_y,e_z)\), or \((i,j,k)\) or sometimes \(\left(\frac{\partial}{\partial x},\frac{\partial}{\partial x},\frac{\partial}{\partial x}\right)\). Here they are denoted ex
, ey
, and ez
(rather than i
,j
,k
which cause problems in the context of R).
<- as.function(dx)
fdx <- as.function(dy)
fdy <- as.function(dz)
fdz matrix(c(
fdx(ex),fdx(ey),fdx(ez),
fdy(ex),fdy(ey),fdy(ez),
fdz(ex),fdz(ey),fdz(ez)
3,3) ),
## [,1] [,2] [,3]
## [1,] 1 0 0
## [2,] 0 1 0
## [3,] 0 0 1
Above we see that the matrix \(dx^i\frac{\partial}{\partial x^j}\) is the identity, showing that ex
, ey
, ez
are indeed conjugate to \(dx,dy,dz\).
Following lines create exeyez.rda
, residing in the data/
directory of the package.
save(ex,ey,ez,file="exeyez.rda")