mRMRe: Parallelized Minimum Redundancy, Maximum Relevance (mRMR)

Computes mutual information matrices from continuous, categorical and survival variables, as well as feature selection with minimum redundancy, maximum relevance (mRMR) and a new ensemble mRMR technique. Published in De Jay et al. (2013) <doi:10.1093/bioinformatics/btt383>.

Version: 2.1.2
Depends: R (≥ 3.5), survival, igraph, methods
Published: 2021-09-04
Author: Nicolas De Jay [aut], Simon Papillon-Cavanagh [aut], Catharina Olsen [aut], Gianluca Bontempi [aut], Bo Li [aut], Christopher Eeles [ctb], Benjamin Haibe-Kains [aut, cre]
Maintainer: Benjamin Haibe-Kains <benjamin.haibe.kains at utoronto.ca>
License: Artistic-2.0
URL: https://www.pmgenomics.ca/bhklab/
NeedsCompilation: yes
Citation: mRMRe citation info
CRAN checks: mRMRe results

Documentation:

Reference manual: mRMRe.pdf
Vignettes: mRMRe: an R package for parallelized mRMR ensemble feature selection

Downloads:

Package source: mRMRe_2.1.2.tar.gz
Windows binaries: r-devel: mRMRe_2.1.2.zip, r-devel-UCRT: mRMRe_2.1.2.zip, r-release: mRMRe_2.1.2.zip, r-oldrel: mRMRe_2.1.2.zip
macOS binaries: r-release (arm64): mRMRe_2.1.2.tgz, r-release (x86_64): mRMRe_2.1.2.tgz, r-oldrel: mRMRe_2.1.2.tgz
Old sources: mRMRe archive

Reverse dependencies:

Reverse imports: PAA
Reverse suggests: FRESA.CAD, mlr, mlrCPO

Linking:

Please use the canonical form https://CRAN.R-project.org/package=mRMRe to link to this page.