Let’s consider a following problem, the model is defined as
\[ y = x_1 * x_2 + x_2 \]
But \(x_1\) and \(x_2\) are correlated. How XAI methods work for such model?
# predict function for the model
the_model_predict <- function(m, x) {
x$x1 * x$x2 + x$x2
}
# correlated variables
N <- 50
set.seed(1)
x1 <- runif(N, -5, 5)
x2 <- x1 + runif(N)/100
df <- data.frame(x1, x2)
In fact this model is defined by the predict function
the_model_predict
. So it does not matter what is in the
first argument of the explain
function.
library("DALEX")
explain_the_model <- explain(1,
data = df,
predict_function = the_model_predict)
#> Preparation of a new explainer is initiated
#> -> model label : numeric ( default )
#> -> data : 50 rows 2 cols
#> -> target variable : not specified! ( WARNING )
#> -> predict function : the_model_predict
#> -> predicted values : No value for predict function target column. ( default )
#> -> model_info : package Model of class: numeric package unrecognized , ver. Unknown , task regression ( default )
#> -> model_info : Model info detected regression task but 'y' is a NULL . ( WARNING )
#> -> model_info : By deafult regressions tasks supports only numercical 'y' parameter.
#> -> model_info : Consider changing to numerical vector.
#> -> model_info : Otherwise I will not be able to calculate residuals or loss function.
#> -> predicted values : numerical, min = -0.1726853 , mean = 7.70239 , max = 29.16158
#> -> residual function : difference between y and yhat ( default )
#> A new explainer has been created!
Use the ceteris_paribus()
function to see Ceteris
Paribus profiles. Clearly it’s not an additive model, as the effect of
\(x_1\) depends on \(x_2\).
library("ingredients")
library("ggplot2")
sample_rows <- data.frame(x1 = -5:5,
x2 = -5:5)
cp_model <- ceteris_paribus(explain_the_model, sample_rows)
plot(cp_model) +
show_observations(cp_model) +
ggtitle("Ceteris Paribus profiles")
Lets try Partial Dependence profiles, Conditional Dependence profiles and Accumulated Local profiles. For the last two we can try different smoothing factors
pd_model <- partial_dependence(explain_the_model, variables = c("x1", "x2"))
pd_model$`_label_` = "PDP"
cd_model <- conditional_dependence(explain_the_model, variables = c("x1", "x2"))
cd_model$`_label_` = "CDP 0.25"
ad_model <- accumulated_dependence(explain_the_model, variables = c("x1", "x2"))
ad_model$`_label_` = "ALE 0.25"
plot(ad_model, cd_model, pd_model) +
ggtitle("Feature effects - PDP, CDP, ALE")