
Additive Bayesian Network Modelling with the R

Package abn

Gilles Kratzer

Zurich University
Fraser Iain Lewis

Danone Nutricia Research

Arianna Comin

National Veterinary Institute
Marta Pittavino

Geneva University
Reinhard Furrer

Zurich University

Abstract

The R package abn is designed to fit additive Bayesian models to observational datasets.
It contains routines to score Bayesian networks based on Bayesian or information theoretic
formulations of generalized linear models. It is equipped with exact search and greedy
search algorithms to select the best network. It supports a possible blend of continuous,
discrete and count data and input of prior knowledge at a structural level. The Bayesian
implementation supports random effects to control for one-layer clustering. In this paper,
we give an overview of the methodology and illustrate the package’s functionalities using
a veterinary dataset about respiratory diseases in commercial swine production.

Keywords: structure learning, graphical models, greedy search, exact search, scoring algo-
rithm, GLM, graph theory, R.

1. Introduction

Bayesian network (BN) modelling has an impressive track record in analysing systems epi-
demiology datasets (Cornet, Sierra, Tournebize, Gabrielle, and Lewis 2016; McCormick 2014;
Hartnack, Odoch, Kratzer, Furrer, Wasteson, L’Abée-Lund, and Skjerve 2019), especially
in veterinary epidemiology (McCormick, Sanchez-Vazquez, and Lewis 2013; Ludwig, Berthi-
aume, Boerlin, Gow, Léger, and Lewis 2013; Firestone, Lewis, Schemann, Ward, Toribio,
Taylor, and Dhand 2014; Cornet et al. 2016; Hartnack, Springer, Pittavino, and Grimm 2016;
Pittavino, Dreyfus, Heuer, Benschop, Wilson, Collins-Emerson, Torgerson, and Furrer 2017;
Ruchti, Meier, Würbel, Kratzer, Gebhardt-Henrich, and Hartnack 2018; Ruchti, Kratzer,
Furrer, Hartnack, Würbel, and Gebhardt-Henrich 2019; Comin, Jeremiasson, Kratzer, and
Keeling 2019). It is a particularly well-suited approach to better understand the underlying
structure of data when scientific understanding of the data is at an early stage. BN modelling
is designed to sort out directly from indirectly related variables and offers a far richer mod-
elling framework than classical approaches in epidemiology like, e.g., regression techniques or
extensions thereof. In contrast to structural equation modelling (Hair, Black, Babin, Ander-
son, Tatham et al. 1998), which requires expert knowledge to design the model, the Additive
Bayesian Network (ABN) method is a data-driven approach (Lewis and Ward 2013; Kratzer,
Pittavino, Lewis, and Furrer 2019b). It does not rely on expert knowledge, but it can possi-

2 Additive Bayesian Network Modelling

bly incorporate it. Contrary to other scoring approaches, it can handle a blend of variables
distributions. Thanks to its formulation, the ABN method supports variables adjustment
and can control for clustering. Within the same framework, the network can be scored and
the effect size estimated. This paper aimes at presenting the actual R implementation of the
ABN methodology using a simple case study. An older package vignette exists that targets
presenting more detailed code.

R is an open-source, reliable and easy-to-use environment for statistical computing. It is very
popular in the epidemiological community (R Core Team 2017). In this paper, ABN refers to
the methodology and abn refers to the R package.

The aim of the R package abn is to provide researchers with a free implementation of a set
of functions to score, select, analyse and report an ABN model. The main functionalities of
the package are Bayesian, information theoretic scoring, exact and greey search algorithms.
The R package abn is also equipped with ancillary functions to simulate and manipulate ABN
models. The package is available through the Comprehensive R Archive Network (CRAN)
at https://CRAN.R-project.org/package=abn. The unique feature of the R package abn

compared to other network modelling R packages is the Bayesian-based scoring system, which
makes ABN methodology theoretically sound and computationally competitive thanks to the
internal use of iteratively nested Laplace approximations (INLA) (Rue, Martino, and Chopin
2009, available at www.r-inla.org/download). From an applied perspective, a regression
framework is suitable for analyses that target data modelling and seek to report insight of
observational data. A byproduct of the Bayesian regression framework used by the R package
abn is the possibility of adjusting an analysis for clustering, which is a common concern in
systems epidemiology and not possible in other network modelling R packages. Beyond its
nice theoretical framework, the R package abn is equipped with the only R implementation of
an exact search based on dynamical programming that targets BN modelling (Koivisto and
Sood 2004).

The structure of this paper is as follows: First, we finish this section with a short motivat-
ing example and alternative approaches for modelling BNs. Then, Section 2 describes the
comprehensive ABN methodology. Section 3 lists and describes the functionalities of the R

package. It includes simulation studies for comparing the efficiency of the implemented scores.
Section 4 presents a case study of an ABN modelling using data from the field of veterinary
epidemiology. We conclude and summarize the article in Section 6. The appendix provides
more technical details.

Gilles Kratzer, Fraser Iain Lewis, Arianna Comin, Marta Pittavino, Reinhard Furrer 3

1.1. Motivating example

We start illustrating the main functionality of the R package abn by analyzing the so-called
asia dataset provided by the R package bnlearn (Scutari 2010). It is a small synthetic dataset
from Lauritzen and Spiegelhalter (1988) about lung diseases (tuberculosis, lung cancer and
bronchitis) and visits to Asia. In total, the dataset consists of eight binary variables with
5’000 observations. As this dataset has been used in various illustrations, we do not present
it here in detail, nor do we perform an initial exploratory data analysis. We assume all
necessary packages are installed and we start with loading the data. The advantage of using
the R package abn over a classical approach is that we take all data into account without
making an a priori choice of what are the independent and the dependent variables.

R> library("abn")

R> data("asia", package = "bnlearn")

R> colnames(asia) <- c("Asia", "Smoking", "Tuberculosis",

R+ "LungCancer", "Bronchitis", "Either", "XRay", "Dyspnea")

We now determine the relationship between the data. A more theoretical and more detailed
explanation is given in Sections 2 and 3.

R> distrib <- as.list(rep("binomial", 8))

R> names(distrib) <- names(asia)

R>

R> mycache <- buildscorecache(data.df = asia, data.dist = distrib,

R+ max.parents = 4)

R> mp.dag <- mostprobable(score.cache = mycache)

At this time, we have constructed the underlying relationship of the variables. In our context,
we also speak of what we have learned about the structure. In a next step, we estimate the
parameters describing the relationship between the variables, estimating the odds ratios of
the conditional effects.

R> # code to plot the computed BN. The actual figure

R> # is manually adapted

R> fabn <- fitabn(object = mp.dag, create.graph = TRUE)

R> require(Rgraphviz)

R> plot(fabn$abnDag)

This example highlights that the R package abn does not model causality. However, it is
possible to structurally constrain the modelling procedure in retaining or banning structures
between the variables. To structurally compare two BNs, one usually use the so called Ham-
ming distance(de Jongh and Druzdzel 2009) which is the number of arcs that should be
changed on the reference network to exactly map the index one. The unconstrained model
has a Hamming distance of 2 compared to the true network whereas the constrained model
is at 1.

R> mycache <- buildscorecache(data.df = asia, data.dist = distrib,

R+ max.parents = 4, dag.retained = ~LungCancer | Smoking)

4 Additive Bayesian Network Modelling

Asia Smoking

TuberculosisLungCancer

Bronchitis

Either

XRay Dyspnea

Asia

Smoking

Tuberculosis LungCancer

Bronchitis

Either

XRay

Dyspnea

Figure 1: Network for asia dataset. Left: unconstrained, right: constrained. The constraint
is on the direction of the link between LungCancer and smoking nodes.

R> mp.dag <- mostprobable(score.cache = mycache)

R> fabn <- fitabn(object = mp.dag, create.graph = TRUE)

The function fitabn() computes the parameter estimates from a given structure, a list of
distributions and a dataset. The asia dataset is made of Bernoulli variables and then the
parameter estimates are log odds ratio. The method used is a Bayesian approach, thus the
estimates are the modes of the posterior distributions.

R> fabn

The ABN model was fitted using a Bayesian approach. The estimated modes are:

$Asia

Asia|(Intercept)

-4.77

$Smoking

Smoking|(Intercept)

0.012

$Tuberculosis

Tuberculosis|(Intercept)

-4.72

Gilles Kratzer, Fraser Iain Lewis, Arianna Comin, Marta Pittavino, Reinhard Furrer 5

$LungCancer

LungCancer|(Intercept) LungCancer|Smoking

-4.28 2.26

$Bronchitis

Bronchitis|(Intercept) Bronchitis|Smoking

-0.85 1.78

$Either

Either|(Intercept) Either|Tuberculosis Either|LungCancer

-11.4 19.1 21.1

$XRay

XRay|(Intercept) XRay|Either

-3.09 8.30

$Dyspnea

Dyspnea|(Intercept) Dyspnea|Bronchitis Dyspnea|Either

-2.08 3.31 2.19

Number of nodes in the network: 8 .

There is an arrow between the nodes Lung Cancer and Smoking. The function fitabn()

returns an intercepts which could be interpreted as noise and an odds ratio of 2.26 on the
logit scale. In exponentiating it we get the classical odds ratio (OR: 9.58) which is a measure
of association between the two random variable. The OR is larger than 1 meaning that Lung
Cancer and Smoking are positivelly associated.

In this simple example, we have plenty of observations to estimate 15 parameters. In more
realistic cases, we have to control for over-fitting. This will be further discussed in Section 4.4.

1.2. Alternative R packages

Not too surprisingly, there are several R packages available for BN modelling, which often
cover a particular model and data niche. The R packages can be divided into two broad
classes: the ones targeting parameters and structure learning and the ones targeting infer-
ence in BN models. Following R packages target parameters and structure learning. The
most popular R package is the R package bnlearn (Scutari 2010). It has implementations of
most of BD scores but also information theoretic scores for continuous and discrete mixed
variables. Additionally, it has implementations of multiple network structure learning via
multiple constraint-based and score-based algorithms. This is the most versatile R package
for BN modeling and should be the prefered primary software choice. When focusing on a
causal framework, the R package pcalg is very popular (Kalisch, Mächler, Colombo, Maathuis,
and Bühlmann 2012). It contains an implementation of the PC-Algorithm that outputs an
essential graph. When dealing with discrete Bayesian networks only, the R package catnet

allows parameter and structure learning using likelihood-based criteria. The R package deal

(Bøttcher, Dethlefsen et al. 2003) enables learning BN with a mixture of continuous and/or

6 Additive Bayesian Network Modelling

discrete variables under the conditional Gaussian distribution (restriction of discrete nodes
being only parent of continuous ones). Other useful R packages are actively maintained on
CRAN, but none of them implement scoring procedures that deal simultaneously with multi-
ple exponential family representatives in a Bayesian or likelihood-based framework and allow
for grouping correction and epidemiological adjustment. When targeting inference the most
used R packages are the gRbase (Dethlefsen, Højsgaard et al. 2005) and gRain (Højsgaard
et al. 2012). Indeed, those R packages do not have any structural learning algorithm, thus the
BN models should be fully provided by the user. But they allows to manipulate efficiently the
models parameter to perform prediction and inference. The R package abn is the only library
for BN modelling inference based on a fully Bayesian regression framework. It contains a
unique implementation of an exact search algorithm. It targets systems epidemiology applied
research in providing to the user extensive outputs easing biological findings interpretation
and reporting. The Task View: gRaphical Models in R (CRAN.R-project.org/view=gR)
gives a comprehensive overview of the different computing libraries available on CRAN.

Aside from R, multiple implementations in other computing environments such as Weka

(Bouckaert 2008) (which is accessible in R via the R package RWeka, Hornik, Buchta, and
Zeileis 2009), MATLAB (Murphy et al. 2001) or open source python or C++ implementation
exist. In the epidemiological community, the R implementations are the most popular ones
due to the simplicity of using R.

2. Methodological background

This section describes the theoretical foundations of ABN. First, we present the BN modelling
paradigm. Then we extend this framework to describe the ABN methodology. Finally, we
embed the ABN methodology into a learning scheme.

2.1. Bayesian Network

The idea of studying observational data using using a BN is quite old (Pearl 1985). Formally, a
BN for a set of random variables X = {X1, . . . , Xn} is a directed acyclic graph (DAG) where
the nodes are the random variables and the directed links are the statistical dependencies
between the nodes. A graph G is the union of two sets: the set of nodes or vertices and the
set of arcs or directed links, arrows or edges. Thus: G = (V, E), where V is a finite set of
vertices and E is a finite set of edges. An index node Xj is said to be the parent of a node
i if the edge set E contains an edge from j to i. A set of parents for a node j is denoted by
Paj . Conversely, one can easily define the set of children Chj for a node j.

In a BN, the factorization of the joint probability distribution P(X) through a so-called set
of local probability distributions is given by the Markov property, which implies that an index
node Xj is dependent solely on its set of parents Paj

P (X) =
n∏

j=1

P (Xj | Paj). (1)

In equation (1), the total number of nodes is denoted by n. A BN model, B, is the union of
the structure S and the model parametrization θB: B = (S, θB). The edges represent both

Gilles Kratzer, Fraser Iain Lewis, Arianna Comin, Marta Pittavino, Reinhard Furrer 7

marginal and conditional dependencies. Collectively, they define the structure or network
which encodes the conditional independence through graphical separation. Verma and Pearl
(1988) shows that if two nodes are d-separated by a set of nodes, then the random variables
are conditionally independent given the set of variables. This theorem is the starting point of
a class of BN learning algorithms called constraint-based approaches. In a BN, each node Xj ,
with parent set Paj , is parametrised by a local probability distribution: P (Xj | Paj). The
choice of the parametrisation is the source of an alternative class of learning algorithms called
score-based approaches. Two networks are said to be equivalent if they represent the same
set of conditonal independence statements. A scoring system is said to be score equivalent
if it assign the same score to equivalent networks. Score equivalence is a key notion for the
score-based approach.

The Markov blanket (MB) of a node is the set of parents, children and co-parents, i.e., the
parents of the specified children. An interesting property of the MB is that this is the set of
nodes that fully inform an index node. For example, in the right network of Figure 1, the MB
of index node "Dyspnea" consists of nodes "Bronchitis" and "Either", whereas the MB of
index node "Either" consists of nodes "XRay", "Dyspnea", "Tuberculosis", "LungCancer"

and "Bronchitis". Indeed, a node is conditional independent of any non-descending node
in a BN given its parents.

2.2. Additive Bayesian Network formulation

An ABN model, A, is a graphical model that extends the usual generalized linear model
(GLM) to multiple dependent variables through the factorization of their joint probability dis-
tribution (Lewis and Ward 2013). An A model assumes that each node is a GLM where the co-
variates are the parents and the distribution depends on the index node. Currently, the avail-
able data distributions are binomial(link=logit), Gaussian(link=identity), Poisson(link=log)
and multinomial(link=logit) where the last distribution is available for MLE fitting only. The
default link function are hard coded.

Given an index node Xj , a set of parents Paj , and using the classical notation for the
exponential family parametrization (Pitman 1936)

P (Xj | Paj) = exp
(
η(θj)T (Xj , Paj) − A(θj)

)
dH(Xj , Paj), (2)

where the functions η, T , A, H may be node-dependent (the indices omitted to simplify the
notation) and where the parameters θj incorporate the configuration of the parents’ node.
For example, in the case of binary variables, i.e., Xj ∈ {0, 1}, equation (2) is simplified when
using the classical logit link function to

P (Xj = 1 | Paj) = logit−1(θj) = expit(θj), (3)

resulting in the classical logistic regression models for all the nodes. The multinomial random
variables are fitted using Poisson log-linear models with coefficients zero for the first class.

The ABN modelling technique is situated in a small data analysis niche. It targets a dataset
composed of variables issued from a mixture of different distributions. The main focus is that
the final model’s parameters should be biologically interpretable. An A is called additive in the
sense that the expected change of the index node with respect to the set of parents is assumed

8 Additive Bayesian Network Modelling

to be additive on the exponential family link scale. Other Bayesian marginal likelihood scores,
such as BDe do not assume additivity. As a direct consequence from assuming additivity, an
A does not model interactions in the data, which could become problematic from a biological
perspective if interactions are expected. Moreover, as this technic relies on the exponential
family to parametrize the model, it implies rather bold assumptions in terms of number of
parameters and thus fitting ability. Indeed, if we simply consider a single binary variable
with k parents (and no other edges) then the number of parameters in an A model will scale
linearly with k, while the saturated model scales as 2k, e.g. with 7 parents, p(Xj |Paj) has 8
parameters versus 128 for the saturated model aka conditional probability table.

2.3. Learning algorithm

Many learning strategies have been proposed depending on the ultimate modelling goal being
in concordance with the research question. To perform inference in BN, one needs a proba-
bilistic model to compare the networks and a search algorithm to select the optimal structure.
If we restrict ourselves to a purely non-dynamic network (which happens when using either
temporally dependent data or a dynamical network) and observational data, we can propose
two main strategies. The first is constraint-based approaches, where one learns the BN using
statistical independence tests. The optimal network is identified using the reciprocal relation-
ship between graphical separation and conditional independence (Spirtes 2001). The second
popular approach is based on structural scoring, where each candidate network is scored and
the one which has the highest score is kept. In practice, this is computationally intractable
for the typical number of variables involved in a research project. The number of possible
networks is massive and increases super-exponentially with the number of nodes (Robinson
1977). A practical workaround is to use a decomposable score, i.e., a score that is additive
in terms of the network’s nodes and depends only on the parents of the index node. This
approach is very close to the classical model selection in statistics (Zou and Roos 2017).

The scoring approach paradigm requires that the scores represent how well the structure fits
the data (Zou and Roos 2017). Many scores have been proposed for discrete BNs in a Bayesian
context (Daly, Shen, and Aitken 2011) that aims at maximizing the posterior probability.
Indeed, Heckerman, Geiger, and Chickering (1995) propose the so-called Bayesian Dirichlet
(BD) family of scores which use a Dirichlet prior. The BD family regroups the K2, BDeu, BDs
and BDla scores (Scutari 2018). For continuous BN with multivariate Gaussian data, using
an inverse Wishart prior leads to the BGe score (Consonni and Rocca 2012). By analogy, the
scores can be adapted to a mixture of variables such as information theoretic scores. They
are less suitable from a theoretical perspective but more polyvalent regarding the possible
data distribution. Scores within a frequentist framework have been proposed (Daly et al.
2011), such as Bayesian Information Criterion (BIC), Akaike Information Criterion (AIC)
and Minimum Description Length (MDL) (Daly et al. 2011). They all have in common a
goodness-of-fit part and a penalty for model complexity. A direct and natural extension of
this idea, implemented in the R package abn, uses the posterior score in a Bayesian regression
settings. When applied to BN scoring, it is called marginal likelihood (MacKay 1992), as
the likelihood is marginalized in the parameter space for the estimation using the regression
framework for the parametrization. In a Bayesian setting, the parameter prior acts as a
penalty term.

The model learning phase involves two parts: 1. Network, skeleton or structure learning

Gilles Kratzer, Fraser Iain Lewis, Arianna Comin, Marta Pittavino, Reinhard Furrer 9

S; and, 2. Parameter learning where the model parameter is θB. Hence, in a Bayesian
framework, constructing an ABN model A given a set of data D

P (A | D) = P (θA, S | D)
︸ ︷︷ ︸

model learning

= P (θA | S, D)
︸ ︷︷ ︸

parameter learning

· P (S | D)
︸ ︷︷ ︸

structure learning

. (4)

The two learning steps are interconnected. Several efficient algorithms have been proposed for
both learning procedures. In order to learn the relationships between variables, the conditional
probability distributions should be fitted. In a frequentist setting and for the Gaussian,
Bernouilli and Poisson distributed variables, this can be done using the classical Iterative
Reweighed Least Square (IRLS) algorithm (Faraway 2016). The multi-categorical random
variables are fitted through a softmax function with the maximization of the conditional
likelihood. The structure selection step can be done using a heuristic or exact approach.

An interesting feature of the ABN methodology is to be able to impose external expert
knowledge. Indeed, in most of applied data analysis, some part of the network is known. For
example, if two random variables are temporally related the direction of the possible arrow is
known. Or if, based on existing literature a possible connection is known to be expected. The
R package abn allows such external causal input through a banning or a retaining matrix.
Those matrices are used to compute the list of valid parent combination. However, a more
theoretically sounding approach, suggested by Heckerman et al. (1995), is to augment the
observed data with synthetic data that represents the causal belief. The practical feasibility
in an ABN analysis remains an open question (McCormick et al. 2013).

3. The R Package abn

This section describes the functionalities of the R package abn. We provide insights about
how the functions are implemented. We show simulations that compare the model parameter
estimations using a Bayesian or an MLE approach and how different scores perform to retrieve
networks.

The R package abn has three level of functionalities for different purposes:

• Core functions: aiming at performing an ABN analysis (scoring and learning)

• Ancillary functions for analysis: aiming at supporting the analysis by enhancing
plotting abilities, accounting for the uncertainty in the structure through link strength
estimation, and comparing structure or getting structural metrics

• Ancillary functions for simulation: aiming at helping in simulating ABN models
by simulating DAGs and ABN data.

A classical ABN analysis is the sequential application of three R functions see Section 1.1
(typically: buildscorecache(), fitabn() and mostprobable()). The reason why the anal-
ysis is divided into three functions is to give more freedom to the end user to tune parameters
and to have a better control over possible learning/fitting issues.

10 Additive Bayesian Network Modelling

3.1. Set of core functions

The two main core functions for scoring are buildscorecache() and fitabn(). The former is
essentially a wrapper of the latter. Those functions have a Bayesian and an MLE implementa-
tion which are not equivalent in their output (there is an argument method that can be bayes

or mle to choose the implementation). They require minimally a named dataset, the named
list of the nodes’ distribution and an upper limit for network complexity. buildscorecache()

first computes an empty list of valid parent combinations using banning and retaining input
matrices (which are assumed to be empty by default). Then it iterates through the cache to
score the candidate piece of network. In the Bayesian implementation, buildscorecache()

and fitabn() estimate a Bayesian regression using the following parameter priors: weekly
informative Gaussian priors with mean 0 and variance 1000 for each of the regression parame-
ters of the model (both binomial and Gaussian), as well as diffuse Gamma priors (with shape
and scale equal to 0.001) for the precision parameters in Gaussian nodes in the model using
an internal INLA code.

buildscorecache() within an MLE setting uses an IRLS algorithm depending on the given
list of distributions at each step of the scoring process. For the special case of the binomial
nodes, the usual logistic regression is tried. If it fails to estimate the given problem, a
bias-reduced tailored algorithm is used (Firth’s correction). It is know to improve accuracy
of regression coefficients in presence of separation (van Smeden, de Groot, Moons, Collins,
Altman, Eijkemans, and Reitsma 2016). If, however, the algorithm fails to return a finite
estimate, some predictors are sequentially removed until the design matrix becomes fully
ranked. These three steps ensure the R package abn to be able to score a dataset even
if there is data separation. The multi-categorical random variables can also be estimated
through IRLS like algorithm. But a well known weakness of this approach is the very high
per-iteration cost due to sparsity of the intermediate matrices. However, fast estimation of
multinomial logit models that efficiently takes advantage of the matrix structures have been
proposed (Hasan, Wang, and Mahani 2016). It overshoots the purpose of abn as it requires
tailored parametrisation, which is not feasible in a fast fully automated scoring procedure. An
alternative approach to estimate multinomial logistic regressions is to approximate it using
multiple sequential binary logistic regressions. The primary purpose of the scoring procedure
is to estimate goodness-of-fit metrics, then special care should be taken to compute the log-
likelihood as each observations are counted multiple times. This estimation step substantially
slows down the estimation process. A robust, easy to implement and fast solution to estimate
unregularized multinomial regression models is to use neural networks with no hidden layers,
no bias nodes and a softmax output layer. The optimisation is done through maximum
conditional likelihood. This procedure is implemented in R by the nnet package (Venables
and Ripley 2002) and is the chosen solution for multi-categorical estimation in abn.

The fitabn() function score a given network. It requires a valid DAG, a named dataset and a
named list of distributions. It returns the list of score for each node, the parameter estimates,
the standard deviation and the p-values. Special care should be taken when interpreting and
displaying the p-values. Indeed, the DAG has been selected using the goodness of fit metric,
so at least adjustment methods should be used.

A unique feature of fitabn() and buildscorecache() is the possibility to take one-layer
clustering into account. In some situations, data collection has a clear grouping aspect.
Therefore, there is a potential risk for non-independence between data points from the same

Gilles Kratzer, Fraser Iain Lewis, Arianna Comin, Marta Pittavino, Reinhard Furrer 11

group that could cause over-dispersion. This can lead to analyses which are over-optimistic,
as the true level of variation in the data is under-estimated.

To account for this additional variability, a random effect is introduced. Thus, each node
becomes a Generalized Linear Mixed Model (GLMM) (Breslow and Clayton 1993; Faraway
2016) instead of a GLM, but in a Bayesian setting (see Section 4.6 for more details). This
implies introducing an additional correlation structure via random effects, i.e., adjusting
for correlated residuals or non-constant variance. The rationale is that standard errors are
underestimated during the first search so the DAG produced during the structure search
without random effect have more rather than less structure. That structure could then be
trimmed during the MCMC part.

We therefore compute the posterior distribution and check if it widens. In such a case, we
must take the clustering in the scoring scheme used into account. From an applied perspective,
the major limitation is the computational burden of this approach. Indeed, if the clustering
is unlikely to impact the estimates, it is preferable not to take it into account. The model
is then much simpler and parsimonious. The clustering adjustment could be performed in a
subset of the nodes.

For learning BN, two types of algorithms are implemented: exact and heuristic searches. The
exact procedure, mostprobable(), runs the exact order-based structure discovery approach
of Koivisto and Sood (2004) to find the most probable network. Its input is a cache of pre-
computed scores as from buildscorecache(), the desired score and structural prior to use.
As described in Koivisto and Sood (2004), mostprobable() uses dynamic programming to
marginalize orders analytically. It cannot handle more than 25 nodes, but on similar size
problem, it outperforms any MCMC and probabilistic approaches. It is implemented with
two structural priors: the koivisto prior that states that different cardinalities of parents are
considered to be equally likely a priori; and a structurally uninformative where parent combi-
nations of all cardinalities are equally likely. The heuristic search algorithms implemented are
the hill-climber, the Tabu and the simulated annealing in the function searchHeuristic().
The function requires a cache of pre-computed scores, the desired score and some method-
dependent arguments.

3.2. Defining a DAG

To specify a DAG, the R package abn uses an adjacency matrix, i.e., a named square matrix
with an entry in the ijth entry if there is an arc from j (parent) to i (child).

The R package abn also recognizes a formula-like syntax, similar to the classical R functions
lm, glm, etc. A typical formula is ~ node1|parent1:parent2 + node2:node3|parent3. The
formula statement has to start with ~. In this example, node1 has two parents (parent1 and
parent2). node2 and node3 have the same parent3. The parent’ss names have to exactly
match those given in data.df. The symbol : is the separator between either children or
parents, the symbol | separates children (left side) and parents (right side), the symbol +

separates terms and . replaces all the variables in data.df. Due to this feature, those
symbols cannot be used in the names of the random variables. The banned matrix could be
produced by the following statement ~ female|., which would prevent the variable female
from having any parents. Currently it is not possible to incorporate interaction terms in this
formula statement.

12 Additive Bayesian Network Modelling

3.3. Ancillary functions for analysis

plotabn() and tographiz() are useful functions for plotting DAGs. plotabn() can display
a DAG with fitted values and arrows with thickness proportional to arc strength.

The concept of link strength for discrete BN was introduced in Boerlage (1992). A good
unpublished overview is given by Ebert-Uphoff (2009). The link strength methodology is
especially useful to account for the uncertainty when using BN to model. Indeed, an arc is
either present or absent. This strong dichotomisation of structural relations in BN is often
hard to interpret. The link strength tends to give a proxy for arc support by the data and
in an applied perspective is complementary to the regression coefficients. In practice, the
function linkStrength() discretizes the dataset using a large choice of histogram rules to
compute multiple link strength metrics. Then, the estimates of the empirical distribution are
plugged in the definition of the entropy to return the so-called empirical entropy. A well-known
problem of empirical entropy is that the estimations are biased due to the sampling noise. It
is also known that the bias decreases as the sample size increases. The mutual information
estimation is computed from the observed frequencies through a plug-in estimator based on
the entropy.

Two functions are useful for comparing DAGs. The compareDag() function returns multiple
graph metrics to compare two DAGs: the confusion matrix, or error matrix in the machine
learning literature (Stehman 1997). compareDag() provides a list with the true positive rate,
the false positive rate, the accuracy, the G-measure, the F1-score, the positive predictive
value, the false omission rate and the Hamming-Distance. The infoDag() returns a list for
standard metrics for describing a DAG that contains the number of nodes, the number of
arcs, the average Markov blanket size, the neighborhood average set size, the parent average
set size and children average set size.

The R function scoreContribution() computes the score contribution of each individual
observation to the total network score and additionally returns the diagonal entries of the hat
matrix. This function attempts to produce influential measures adapted to Additive Bayesian
Networks models. In a regression context, this is possible for a single or a small group of
observations to have a great influence on the results of a regression analysis. Therefore it is
important in an applied perspective to detect influential observations and to take them into
consideration when interpreting the results (Belsley, Kuh, and Welsch 2005).

3.4. Ancillary functions for simulation

To simulate DAGs and ABN data, the functions simulateDag() and simulateAbn() are
provided. The function simulateDag() generates DAGs with an arbitrary arc density. To
ensure acyclicity, it samples a triangular adjacency matrix. The arc density is tuned with a
binomial sampling probability. The simulateAbn() generates ABN data using the R package
rjags (Plummer 2018). Simulating observations from a given structure is done with a random
number generator, respecting the node ordering using JAGS (Plummer et al. 2003). It first
creates a BUG file in the index repository, then uses it to simulate the data. This function
produces a data frame. The purpose of those two functions is to assess the effectiveness of
the other functions of the R package abn. But they could also be used to plan and conceive
systems epidemiology studies in assessing the necessary number of samples as a function of

Gilles Kratzer, Fraser Iain Lewis, Arianna Comin, Marta Pittavino, Reinhard Furrer 13

the expected effect size.

4. Case study

X1 X2 X3 …

12 23 53 …

32 31 23 …

10 16 45 …

… … … …

Original dataset

Score 1

Score 2

Score 3

Cache of pre-computed scores

Bootstrapping

R > buildscorecache()

R > mostprobable()

BN of a given complexity

R > fitabn()

…

……

…
… …

……

…

Parameter estimation
BN scoring

Looping over to find the

needed network complexity

…

……

…
… …

……

…

From the BN generate data

JAGS > model.bug

X1 X2 X3 …

24 55 54 …

76 78 43 …

01 21 44 …

… … … …

X1 X2 X3 …

33 24 54 …

99 87 03 …

21 33 66 …

… … … …

X1 X2 X3 …

16 27 01 …

73 28 19 …

99 78 32 …

… … … …

…

R > mostprobable()

R > buildscorecache()

Score 1

Score 2

Score 3

Score 1

Score 2

Score 3

Score 1

Score 2

Score 3

…

Consensus DAG

…

……

…
… …

……

…

R > fitabn()

Pruned final model

Simulated datasets

Caches of
pre-computed scores

Figure 2: Schematic workflow diagram for a typical ABN analysis. In the green square is the
typical workflow for an ABN analysis. The blue square describes the bootstrapping procedure.

The purpose of this case study is to perform a fully reproducible and transparent analysis of
an open access observational dataset. The main objective is to produce a reliable network
together with the necessary information to allow applied researchers to interpret and report it.
The final model is controlled for over-fitting, and some strategies for controlling for clustering
are presented. The code for the analysis is provided to help disseminate the ABN approach
in the systems epidemiology community by addressing every step from an applied and in-
terpretative perspective. The proposed procedure for performing an ABN analysis could be
quite complex for a new user. Figure 2 shows in green the workflow diagram of a classical
ABN analysis. It is the sequential application of three functions: buildscorecache() for
computing a cache of pre-computed scores; a search algorithm such as mostprobable() or
searchHeuristic(); and fitabn() for fitting the final model to the data. In blue, the boot-
strapping workflow is presented. It is very similar to a classical ABN analysis, except that it

14 Additive Bayesian Network Modelling

is based on simulated datasets to control for possible over-fitting.

4.1. Data description and library loading

The case study dataset collected in March 1987 is about growth performance and abattoir
findings in the commercial production of pigs in 15 Canadian farms (Dohoo, Martin, Stryhn
et al. 2003). The data were collected to study inter-relationships among respiratory diseases
(atrophic rhinitis and enzootic pneumonia), ascarid level and daily weight gain. This dataset is
well adapted to show the unique ability of BN modelling to disentangle complex relationships
with observational datasets. The data is an adapted version of the original dataset. It consists
of 341 observations of the 9 variables described in Table 1. A nice feature of this dataset is
that it is composed of continuous, discrete and count distributed variables. Furthermore, the
dataset has a natural grouping feature due to the different farms. This is used to showcase
the capability of the R package abn to control for a grouping effect.

Table 1: Description of the variables.

Variable Meaning Distribution

AR presence of atrophic rhinitis Binomial
pneumS presence of moderate to severe pneumonia Binomial
female sex of the pig (1=female, 0=castrated) Binomial
livdam presence of liver damage (parasite-induced white spots) Binomial
eggs presence of fecal/gastrointestinal nematode eggs Binomial

at time of slaughter
wormCount count of nematodes in small intestine at time of slaughter Poisson
age days elapsed from birth to slaughter (days) Continuous
adg average daily weight gain (grams) Continuous
farm farm ID Discrete

The R package abn and its dependencies are available from CRAN. To fully profit from the
case study presented below, other software needs to be installed: Rgraphviz (Hansen, Gentry,
Long, Gentleman, Falcon, Hahne, and Sarkar 2019) from bioconductor; or alternatively the
R package DiagrammeR (Iannone 2019) and the JAGS computing library (Plummer et al.
2003). One can load the data using the following code

R> data("adg", package = "abn")

4.2. Data Preparation and package loading

Each variable in the model needs to be associated with a distribution. Thus, one needs to
create a named list that contains all the variables and the corresponding distributions. As a
remainder, the available data distributions are binomial, Gaussian, Poisson and multinomial,
where the last distribution is available for MLE fitting only. The data of this example is well
defined, but in general one needs to coerce binary or multinomial variables to factors

R> dist <- list(AR = "binomial", pneumS = "binomial",

Gilles Kratzer, Fraser Iain Lewis, Arianna Comin, Marta Pittavino, Reinhard Furrer 15

0 1

AR

p
ro

p
o

rt
io

n

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

91

250

0 1

pneumS

p
ro

p
o

rt
io

n

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

293

48

0 1

female

p
ro

p
o

rt
io

n

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

169 172

0 1

livdam

p
ro

p
o

rt
io

n

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

62

279

0 1

eggs

p
ro

p
o

rt
io

n

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

258

83

worms

D
e

n
s
it
y

0 20 40 60 80

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

age

D
e

n
s
it
y

140 160 180 200 220 240 260

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

0
.0

2
0

adg

D
e

n
s
it
y

300 400 500 600 700

0
.0

0
0

0
.0

0
2

0
.0

0
4

1 2 3 4 5 6 7 8 9 10 12 14

Farm ID

c
o

u
n

t

0
1

0
2

0
3

0
4

0

Figure 3: Descriptive distributions of the variables.

R+ female = "binomial", livdam = "binomial", eggs = "binomial",

R+ wormCount = "poisson", age = "gaussian", adg = "gaussian")

A nice feature of the R package abn is the ability to input prior information about structural
beliefs about the data to guide the structure search. Indeed, prior expert knowledge is common
in systems epidemiology. In this case study, it is reasonable to assume that none of the
variables in the model are going to affect the sex of the animal, an inborn trait. To encode
this information, we ban all the arcs going to female by setting their value to 1 (banned),
opposite to the default value 0 (not banned) in an adjacency matrix-like formulation. The
rows are children and the columns are banned parents of the index nodes.

R> print(banned)

AR pneumS female livdam eggs wormCount age adg

AR 0 0 0 0 0 0 0 0

pneumS 0 0 0 0 0 0 0 0

female 1 1 0 1 1 1 1 1

livdam 0 0 0 0 0 0 0 0

eggs 0 0 0 0 0 0 0 0

wormCount 0 0 0 0 0 0 0 0

age 0 0 0 0 0 0 0 0

adg 0 0 0 0 0 0 0 0

By default, the R package abn assumes no banned nor retained arcs. See Section 3.2 on how
to specify banned or retained arcs by using a formula-like syntax.

16 Additive Bayesian Network Modelling

4.3. Structure search

For computational reasons, it is advised to constrain the maximum number of parents allowed
for each node. We start to compute a cache of pre-computed scores with a single parent per
node and increase subsequently the number of parents until the network score of the optimal
structure does not get larger, even when more parents are allowed. Based on the cache of
pre-computed scores, an exact search using the function mostprobable() is performed and
the network score is computed. In R this is done using a simple for loop with the functions
buildscorecache(), mostprobable() and fitabn().

R> result <- vector("numeric", 7)

R>

R> # ban: formula statement retain: not constrained

R> for (i in 1:7) {

R+ mycache <- buildscorecache(data.df = as.data.frame(abndata),

R+ data.dists = dist, dag.banned = ~female | .,

R+ dag.retained = NULL, max.parents = i, method = "bayes")

R+ mydag <- mostprobable(score.cache = mycache)

R+ result[i] <- fitabn(object = mydag)$mlik

R+ }

Figure 4 displays the network score as a function of the number of parents. The maximum
log marginal likelihood (–2709.25) is achieved with 4 parents. As one can see, the network
score increases quickly at the beginning but then plateaus. A strong assumption is to say
that if increasing the network complexity by one does not change the network score, then the
maximum was achieved. Indeed, nothing prevents the maximum network score being constant
when increasing the number of parent but still changing further when increasing again. An
alternative is to run an analysis with a pre-defined network complexity. Another approach is
to use a heuristic search provided by searchHeuristic(). The heuristic approaches, contrary
to the exact search, do not guarantee the achievement of the optimal network score. These
approaches, however, do not suffer from computing limitations, thus they are the only viable
solution for large problems. Many efficient heuristic search algorithms are implemented in
bnlearn (Scutari 2010).

●

●

● ● ● ● ●

1 2 3 4 5 6 7

−
2

8
0

0
−

2
7

6
0

−
2

7
2

0

Parent limit

L
o

g
 m

a
rg

in
a

l
lik

e
lih

o
o

d

Figure 4: Total network log marginal likelihood as a function of the number of parents.

Gilles Kratzer, Fraser Iain Lewis, Arianna Comin, Marta Pittavino, Reinhard Furrer 17

Figure 5 shows the DAG selected using mostprobable() with a model complexity of 4 parents.
This DAG has 10 arcs for 8 variables, so this is a relatively sparse model (the average number
of parents per node is 1.25, the average size of the Markov blanket is 3.75 and each node has on
average 2.5 neighbors; as returned by function infoDag() or summary()). The square nodes
are conditionally Bernoulli distributed, the oval nodes are conditionally normally distributed
and the diamond node is conditionally Poisson distributed.

Figure 5: DAG selected using an exact search with a model complexity of four parents.

4.4. Control for over-fitting

One major concern in BN modelling is the tendency for over-fitting. Indeed, the number
of observations is generally very limited in comparison to the number of parameters in the
model. The number of possible models, i.e., DAGs, increases super-exponentially with the
number of random variables (Robinson 1973). The possible number of DAGs with 25 nodes
are about a googol (10100).

More conceptually, the question remains of how to present the result of a BN modelling analy-
sis. Multiple strategies have been proposed to create a summary network. One could perform
multiple heuristic searches. One common and very simple approach is to produce a single
robust BN model of the data mimicking the approach used in phylogenetics to create majority
consensus trees. A majority consensus DAG is constructed from all the arcs present in at least
50% of the locally optimal DAGs found in the search heuristics. This creates a single sum-
mary network. The function searchHillclimber() performs such an analysis. Rather than
using the majority consensus network as the most appropriate model for data, an alternative
approach would be to choose the single best model found during a large number of heuristic
searches using searchHeuristic(), or if possible an exact search using mostprobable().

18 Additive Bayesian Network Modelling

The sensible step of this approach is to set the necessary number of searches needed to be run
to provide reasonable coverage of all the features of the model landscape. Then this model
should be adjusted for possible over-fitting. Like the majority consensus network, which
effectively averages over many different competing models and therefore should generally
select only robust structural features, single best DAG strategy should be controlled for over-
fitting. Indeed, choosing the DAG from a single model search is far more likely to contain
some spurious features, especially when dealing with small datasets of around several hundred
observations. It is extremely likely to over-fit, as one can easily demonstrate using simulated
data.

A simple assessment of over-fitting can be made by comparing the number of arcs in the
majority consensus network with the number of arcs in the best-fitting model found using an
exact search or a large number of heuristic searches. We have found that in larger datasets, the
majority consensus and best-fitting model can be almost identical, while in smaller datasets
the best-fitting models may have many more arcs, suggesting a degree of over-fitting.

An advantage of choosing a DAG from an individual search is that, unlike averaging over lots
of different structures as in the construction of a majority consensus network, the model chosen
here has a structure which was actually found during a search across the model landscape.
In contrast, the majority consensus network is a derived model which may never have been
chosen during even an exhaustive search. Indeed, it may comprise contradictory features, a
usual risk when averaging across different models. In addition, a majority consensus network
need also not to be acyclic, although in practice this can be easily corrected by reversing
one or more arcs to produce an appropriate DAG. A simple compromise between the risk
of over-fitting when choosing the single highest-scoring DAG and the risk of inappropriately
averaging across different distinct data generating processes is to prune the highest-scoring
DAG using the majority consensus model. In short, element-wise matrix multiplication of the
highest-scoring DAG and the majority consensus DAG gives a new DAG which only contains
the structural features in both models. An alternative approach for tackling this problem,
would be to use Bayesian model averaging. Structural MCMC will be discussed in Section 6.

Friedman, Goldszmidt, and Wyner (1999) presented a general approach for using parametric
and non-parametric bootstrapping to select BN models/DAG structures. They showed that
a non-parametric approach seems to converge less rapidly in terms of number of samples but
requires fewer assumptions. The non-parametric bootstrapping approach is relatively easy to
implement and efficient in extracting robust features from the data. The parametric approach
can be implemented by using readily available Markov chain Monte Carlo sampling software
such as JAGS or WinBUGS. The basic idea is to take the structure with the best network
score, code it, and use these samplers to generate bootstrap datasets from this model. That
is, independent realizations from the model which can be used to generate datasets of the
same size as the observed data. Then the model search is repeated treating the bootstrap data
as the observed data. Generating many bootstrap datasets and conducting searches on each
allows us to estimate the percentage support for each arc in the highest-scoring model. In
other words, we find out how many of the arcs in the highest-scoring model can be recovered
from a dataset of the size that was actually observed. Obviously, the more data, the more
statistical power and recoverable structural features. Arcs with a lower level of support, e.g.,
<50%, can be pruned from the best fitting model, assuming that these are potentially a result
of over-fitting. The resulting model - possibly with arcs pruned from the original model - is
the chosen model for the data. The 50% threshold is arbitrary and could possibly depend on

Gilles Kratzer, Fraser Iain Lewis, Arianna Comin, Marta Pittavino, Reinhard Furrer 19

the expected arc density or model complexity.

An obvious limitation of the parametric bootstrapping method is the fact that the adjustment
for over-fitting transfer the assumptions and limitation of the original method to the simulated
data. An ABN model assumes the absence of interactions in conditional distributions (i.e.
p(Xj |Paj)) which might be present in the underlying data. When using non-parametric ap-
proach the original data are used and the feature not captured by the model, are still present.
Other options for trimming or pruning arcs exist, but without further information it seems to
be a reasonnable uninformative guess. This strategy is commonly used in phylogenetic trees.

While parametric bootstrapping as a general technique is well established and conceptually
elegant, it may in practice not be computationally feasible. Even when taking the least de-
manding approach of conducting only one heuristic search per bootstrap dataset, the number
of datasets/searches required to get robust support values for each arc in the best fitting
model may be large and beyond what is reasonably possible even using high performance
computing (HPC) hardware.

4.5. Parametric bootstrapping

The chosen dataset allows us to do fast parametric bootstrapping. Given a BN model - a
DAG structure plus parameter priors - the first step is to estimate the posterior parameters.
The second step is to implement the DAG structure together with the posterior parameters
in a BUG file. To make the implementation as general as possible, we present an approach
based on dcat() from JAGS that discretizes each posterior density across a fine grid.

The function fitabn() with compute.fixed = TRUE uses Laplace approximations to estimate
the posterior density of each parameter in a BN model. An appropriate domain (range) for
each parameter must be supplied by the user using a bit of trial and error. It is crucially
important to give a sufficiently wide range so that all of the upper and lower tails of the
distribution are included, e.g., the range should encompass where a density plot first drops
to approximately zero at each tail.

Figure 6 compares one round of simulated data (in blue) with the original data (in black).
By default, fitabn() center and standardizes continuous data. As one can see, the simulated
data looks fairly good except for the count data, which looks sub-optimally simulated as the
long right tail is under-represented in the simulated data. Figure 6 is only comparing margins
and not joint distributions.

The code displayed in Annex C performs 5000 bootstrapping steps from a model defined in
a BUG file called model8vPois.bug using the R package rjags. A thinning of 20 is used
to reduce auto-correlation in the simulated samples. The global search is depicted with the
pseudo-code given in Algorithm 1.

In the following text, the list of DAGs selected from the simulated datasets is called the
bootstrapped samples. In order to simulate the variables of the dataset, we need to provide
a model for each of them using the aforementioned parameters estimates. For instance, the
binomial node AR in our DAG has one incoming arc coming from the node age. In a regression
setting this would be translated into:

logit(AR = 1 | age) = α + β · age + ε, (5)

20 Additive Bayesian Network Modelling

0 1

AR − original

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 1

AR − simulated

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 1

pneumS − original

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 1

pneumS − simulated

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 1

female − original

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 1

female − simulated

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 1

livdam − original

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 1

livdam − simulated

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 1

eggs − original

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 1

eggs − simulated

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

wormCount − original

0 20 40 60 80

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

wormCount − simulated

0 20 40 60 80

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

age − original

−2 −1 0 1 2 3

0
.0

0
.1

0
.2

0
.3

0
.4

age − simulated

−3 −2 −1 0 1 2 3

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

adg − original

−3 −2 −1 0 1 2 3

0
.0

0
.1

0
.2

0
.3

adg − simulated

−4 −2 0 2 4
0

.0
0

.1
0

.2
0

.3

Figure 6: Example of simulated data (in blue) versus original data (in black).

where α is the intercept, β is the regression coefficient for variable age, and ε is the error
term modeled by a binomial distribution. Then, the values of α and beta is sampled using the
function dcat() within JAGS from the original discrete distribution of parameters generated
by fitabn().

Figure 7 displays the arc distribution from the selected BNs from the simulated datasets,
i.e., the bootstrapped samples. The network selected from the original dataset had 10 arcs.
This is an indication of over-fitting from the original model. Or alternativelly it could be
due to interactions between parents presentin the empirical conditional distributions that by
construction are not present in the ABN.

4 5 6 7 8 9 10 11 12

0
5
0
0

1
0
0
0

1
5
0
0

Figure 7: Histogram of the distribution of the number of arcs in the bootstrapped searches

In order to produce the final pruned DAG, we measure the prevalence of each arc in the
generated structures and retain only arcs present in at least 50% of the bootstrapped samples.

Gilles Kratzer, Fraser Iain Lewis, Arianna Comin, Marta Pittavino, Reinhard Furrer 21

Result: A list of DAGs and bootstrapped dataset
Input : A fitted ABN model, an original dataset, model complexity limit, a random

seed, a number of desired bootstrap runs, a BUG file model, a thinning
parameter

Output: List of matrices and dataframe

for 1:n do

Read a BUG file and run JAGS over it
Extract simulated samples
Format data
Compute a cache of pre-computed scores
Run an exact search
Fit an ABN model to the selected BN

end

Algorithm 1: Pseudo-code for bootstrapping ABN models.

The matrix displayed below shows the percentage of arcs retrieved within the bootstrap
samples. As one can see, some arcs are clearly supported or excluded, but some are very
close to the 50% threshold. This is not surprising given the typical number of observations
of an epidemiological study (a few hundred). An alternative approach would be to consider
an undirected graph that includes all arcs supported regardeless to direction in more than
50% of the bootstrap samples. Such approach will rely on the idea that ABN methodology
is acausal and the existence of a link is more important than the direction of the arc. This
decision is likely to be problem-specific.

R> print(perdag * 100, digits = 0)

AR pneumS female livdam eggs wormCount age adg

AR 0 0 1 0 0 0 76 5

pneumS 1 0 0 0 0 0 40 8

female 0 0 0 0 0 0 0 0

livdam 0 0 0 0 53 2 0 0

eggs 0 0 0 25 0 0 8 75

wormCount 71 1 1 0 100 0 100 60

age 18 17 56 0 3 0 0 26

adg 1 2 11 0 6 0 74 0

4.6. Control for clustering

In the adg dataset, the data were collected in different farms (random variable encoded as
farm). A workaround was needed to introduce additional correlation structure via random
effects when fitting the data to the structure to avoid overly optimistic parameter estimates.
Three strategies for clustering adjustment are possible in an ABN analysis. They are ranked
in terms of computational complexity:

22 Additive Bayesian Network Modelling

• Adjustment at the regression phase: given the structure selected without adjuste-
ment (eventually controlled for overfitting), it is possible using the function fitabn()

to adjust the regression coefficients for clustering.

• Adjustment at the bootstrapping phase: given the structure selected without
adjustment, one can alter the code aiming at controlling for overfitting in adding a
Gaussian random effect in the model.

• Adjustment at the learning phase: learning the structure with cluster adjusted
scores with the function buildscorecache().

Adjustment at the regression phase

The function fitabn() has the possibility to control internally for clustering using the ar-
guments group.var and cor.var. One can choose which variable should be adjusted. On a
personal computer, computing the adjusted model takes 15 minutes to compute, whereas the
unadjusted model ran in less than a second. The grouping variable has 15 levels. In the
function fitabn(), we apply the grouping adjustment to all random variables.

The following code will produce adjusted regression coefficients:

R> marg.f.grouped <- fitabn(object = mydag, group.var = "farm",

R+ cor.vars = c("AR", "livdam", "eggs", "wormCount", "age",

R+ "adg"), compute.fixed = TRUE, n.grid = 1000)

Adjustment at the bootstrapping phase

In the BUG file, one can add a random effect for each level of the clustering variable (M=15;
the number of farms). The random effects are typically chosen as normally distributed with
mean zero and precision parameter determined with a diffuse gamma prior. In practice one
modifies the BUG file with a for loop over the number of levels of the clustering variable
(M=15; the number of farms) for each variable that should be adjusted. And a list of priors
for precision parameters. This approach aims at verifying which of the selected arcs are ro-
bust enough to pass the bootstrapping phase when correction is applied to account for the
additional variance produced by the clustering.

$> for(j in 1:M){\newline

$ % random effect for each group for variable adg\newline

$ rv.adg[j] ~ dnorm(0.0,prec.rv.adg);\newline

$}\newline

$> % priors definitions\newline

$> % rv priors\newline

$>\newline

$> prec.rv.adg ~ dgamma(1,5E-05);\newline

Gilles Kratzer, Fraser Iain Lewis, Arianna Comin, Marta Pittavino, Reinhard Furrer 23

Adjustment at the learning phase

The finest adjustment is done directly at the learning phase when pre-computing the network
scores. This is also the most computationally demanding and it can become numerically
unstable given the number of models that should be computed. This is done using the
group.var and cor.var arguments in buildscorecache(). In the following code the same
structural constraints have been used and the number of possible parent is limited to 4.

R> # recompute the cache of scores using GLMM

R> mycache <- buildscorecache(data.df = abndata, data.dists = dist,

R+ group.var = "farm", cor.vars = c("AR", "pneumS",

R+ "female", "livdam", "eggs", "wormCount", "age",

R+ "adg"), dag.banned = ~female | ., dag.retained = NULL,

R+ max.parents = 4)

R>

R> # exact search

R> dag.adjusted <- mostprobable(score.cache = mycache)

R>

R> # recompute the marginal using GLMM

R> marg.f.grouped <- fitabn(object = dag.adjusted, group.var = "farm",

R+ cor.vars = c("AR", "pneumS", "female", "eggs",

R+ "wormCount", "age", "adg"), compute.fixed = TRUE,

R+ n.grid = 100, control = list(max.mode.error = 0,

R+ epsabs.inner = 0.1, max.hessian.error = 0.5,

R+ epsabs = 0.1, error.verbose = FALSE, hessian.params = c(0.01,

R+ 0.1), factor.brent = 10, loggam.inv.scale = 0.1))

Figure 8 shows the parameter distribution adjusted for clustering using random effect. The
adjustment has been applied to every node except the node female. After postproceesing,
the random effect applied to this node is poorly estimable. Indeed, the number of female
versus castrated pigs across farms is the fairly similar, which implies that the clustering has
a negligible effect. As one can see when comparing figures 8 and 13, the quantiles have not
widened much.

4.7. Accounting for uncertainty in BN models

Calculating the so-called link strength is useful for both visualization and approximate in-
ference, and it can be seen as a proxy for arc uncertainty. The strength of the edges is a
complementary metric to regression coefficients. We use a link strength metric called the true
average link strength percentage (PLS), which expresses by how many percentage points the
uncertainty in variable Y is reduced by knowing the state of its parent X if the states of
all other parent variables are known (averaged over the parent states using their actual joint
probability). The actual definition is:

PLS(X → Y) =
H(Y |Z) − H(Y |X, Z)

H(Y |Z)
. (6)

24 Additive Bayesian Network Modelling

0.5 1.0 1.5 2.0 2.5

0
.0

1
.0

AR : AR|(Intercept)

0.0 0.5 1.0 1.5

0
.0

1
.0

2
.0

AR : AR|age

0 5 10 15 20

0
.0

0
.2

AR : AR|group.precision

−3.5 −3.0 −2.5 −2.0 −1.5 −1.0

0
.0

1
.0

pneumS : pneumS|(Intercept)

0 5 10 15

0
.0

0
0

.2
0

pneumS : pneumS|group.precision

−0.4 −0.2 0.0 0.2 0.4

0
1

2
3

female : female|(Intercept)

1 2 3 4

0
.0

0
.6

livdam : livdam|(Intercept)

−1 0 1 2 3

0
.0

0
.3

0
.6

livdam : livdam|eggs

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0
.0

0
.6

1
.2

livdam : livdam|group.precision

−4 −3 −2 −1 0 1
0

.0
0

.3
0

.6

eggs : eggs|(Intercept)

−0.5 0.0 0.5 1.0

0
.0

1
.0

eggs : eggs|adg

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4

eggs : eggs|group.precision

−3.5 −3.0 −2.5 −2.0 −1.5 −1.0 −0.5

0
.0

0
.6

wormCount : wormCount|(Intercept)

0.2 0.3 0.4 0.5 0.6 0.7

0
2

4
6

wormCount : wormCount|AR

2.2 2.4 2.6 2.8 3.0 3.2

0
.0

1
.5

wormCount : wormCount|eggs

−0.4 −0.2 0.0 0.2

0
2

4

wormCount : wormCount|age

−0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2

0
2

4

wormCount : wormCount|adg

0.0 0.5 1.0 1.5 2.0 2.5

0
.0

1
.0

wormCount : wormCount|group.precision

−1.0 −0.5 0.0 0.5

0
.0

1
.0

2
.0

age : age|(Intercept)

0.2 0.3 0.4 0.5 0.6 0.7

0
2

4
6

age : age|female

0 1 2 3 4 5

0
.0

0
.3

0
.6

age : age|group.precision

2.0 2.5 3.0 3.5

0
.0

1
.0

2
.0

age : age|precision

−0.4 −0.2 0.0 0.2

0
2

4
6

adg : adg|(Intercept)

−0.95 −0.90 −0.85 −0.80 −0.75 −0.70

0
4

8
1

2

adg : adg|age

10 20 30 40

0
.0

0
0

.0
4

adg : adg|group.precision

4.0 4.5 5.0 5.5 6.0 6.5 7.0

0
.0

0
.4

0
.8

adg : adg|precision

Figure 8: Marginal densities of model parameter corrected for random effect.

For the case of an arc going from node X to node Y and where the remaining set of parents
of Y is denoted as Z. H is the entropy computed using the empirical distribution. The link
strength is set to zero if there is no arc going from X to Y . The matrix below displays the
percent link strength:

R> print(LS, digits = 3)

AR pneumS female livdam eggs wormCount age adg

AR 0.000 0 0.0000 0 0.0000 0 0.089 0.000

pneumS 0.000 0 0.0000 0 0.0000 0 0.000 0.000

female 0.000 0 0.0000 0 0.0000 0 0.000 0.000

livdam 0.000 0 0.0000 0 0.0405 0 0.000 0.000

eggs 0.000 0 0.0000 0 0.0000 0 0.000 0.128

wormCount 0.282 0 0.0000 0 0.4068 0 0.434 0.376

age 0.000 0 0.0189 0 0.0000 0 0.000 0.000

adg 0.000 0 0.0000 0 0.0000 0 0.390 0.000

4.8. Presentation of the results

The posterior marginals represent estimates of the parameters at each node, i.e., the arcs in the
DAG. As the variables are coming from different distributions, they have different biological
interpretations. In Figure 9, the square nodes are Bernoulli distributed, the oval nodes are
normally distributed and the diamond node is Poisson distributed. The posterior marginals
represent correlation coefficients for Gaussian nodes, log rate ratios for Poisson nodes, and
log odds ratios for binomial nodes. Binomial and Poisson nodes need to be exponentiated to
get the odds ratios or rate ratios, respectively.

Gilles Kratzer, Fraser Iain Lewis, Arianna Comin, Marta Pittavino, Reinhard Furrer 25

Figure 9: Final ABN model with arc width proportional to link strength

Table 2: Marginals posterior distribution of the parameter estimates

2.5Q median 97.5Q interpretation LS

AR|age 1.46 2.14 3.19 odds ratio 0.09
livdam|eggs 0.92 2.84 10.23 odds ratio 0.04
eggs|adg 0.71 1.10 1.73 odds ratio 0.13
wormCount|AR 1.38 1.57 1.79 rate ratio 0.28
wormCount|eggs 11.38 14.85 19.59 rate ratio 0.41
wormCount|age 0.77 0.91 1.08 rate ratio 0.43
wormCount|adg 0.78 0.90 1.05 rate ratio 0.38
age|female 0.31 0.44 0.58 correlation 0.02
adg|age -0.90 -0.84 -0.77 correlation 0.39

5. Simulation study

Simulation studies are needed to test models and implemented methods. As an illustration
we show here one simulation that illustrates the efficiency of the implemented scoring system.
More simulation studies are in the annexes: A about DAGs structural metrics and B about
a quality assesment of the estimation of the regression coefficients.

The parameters which are important from a simulation point of view are the BN dimension,
i.e., the number of nodes of the BN, the structure density, i.e., average number of parents per

26 Additive Bayesian Network Modelling

node, and the sample size. Additionally to those structure-wise metrics, important factors that
impact simulations are the intensity of the arc link, the variability of the arc’s distributions
and the mixture of variables. Indeed, scores used are only approximately the same over
Markov equivalence classes and the discrepancy increases when mixing distributions.

5.1. Comparison of score accuracy

In order to estimate the efficiency of the different scores implemented in the R package abn,
BNs with a given arc density have been simulated, from which 20 datasets have been simulated
with different sample sizes. The metrics used to display performance of the score are the true
positive (number of arcs properly retrieved), false positive (selecting an arc when there is not
one) and false negative (selecting no arc when there is one). The scores used are marginal
posterior likelihood in a Bayesian regression framework (abn), maximum likelihood without
penalization for complexity (mlik), AIC, BIC and MDL.

Figure 10 shows for an increasing number of observation n = 5, 10, 50, . . . , 10000 the accuracy
of five scores mentioned above for a given BN density using boxplots to display the variability
of the distribution of different metrics. As one can see in Figure 10, the mlik (maximum
likelihood) is a sub-optimal score for BN learning as Daly et al. (2011) expected. None of
the other scores are better or worse in general and they give different results for a specific
dataset. Interestingly from an applied perspective, the marginal posterior likelihood seems to
achieve very promising results with a limited number of observations.

6. Summary and discussion

The R package abn is a free implementation of the ABN methodology that allows users to
fit Bayesian and MLE ABN models to observational datasets. The R package abn contains
functions to analyze, select, plot and simulate ABN models. The functions are designed to
be usable with limited knowledge of state-of-the-art Bayesian inference methods.

The R package abn suffers from several applied and modelling limitations. Some of these
limitations are inherent in the Bayesian modeling framework some are tentatively tackled in
an ABN satellite suite of R packages. These packages are at different development stages,
but they are all designed to work synergetically with the R package abn and hopefully will
be integrated in the long term.

From an applied perspective, researchers often have to extract a limited number of variables
from a large observational dataset. In an ABN context, the exact search algorithm is com-
putationally very sensitive to the number of variables in the network. An ABN analysis
targets epidemiological modeling problems where a set of variables of importance rather than
a unique outcome can be clearly identified for the modelling. Most of the classical model
selection technique requires a model and a clear outcome to assess the predictive power of the
covariate. BNs modeling is a typical setting where the variables should be selected to build
the model or researchers are interested in a multi-outcome dataset. Driven by these findings,
a variable selection approach that solves those issues has been proposed to facilitate the ABN
analysis. The R package varrank (Kratzer and Furrer 2018a,b) is an implementation of the
minimum redundancy maximum relevance model (Battiti 1994) that performs multi-outcome
variable ranking. It can be used prior to the R package abn to perform dimensionality reduc-
tion and to focus on modelling important variables. A possible alternative could be to use

Gilles Kratzer, Fraser Iain Lewis, Arianna Comin, Marta Pittavino, Reinhard Furrer 27

● ●

●

●
●

●

●
●

●

● ●●●
●●

●

●●

●● ●
●
●

●

●

●

●

●

●

●

●

●●●●
●
● ●

●

●
● ●

●

●

●

●●
●●
●

●●●

●●

0.5

0.6

0.7

0.8

0.9

1.0

5 10 50 100 500 1000 2000 3000 5000 7500 10000

abn.accuracy

mlik.accuracy

aic.accuracy

bic.accuracy

mdl.accuracy

Percentage of arcs retrieved (30% connected BN)

●

●

●
● ●

●

●
●

●

● ●

●

●

●
●

●
●
●●●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●
●

●

●

●●
●●
●

●●●

●
●
●
●

0.0

0.1

0.2

0.3

0.4

0.5

5 10 50 100 500 1000 2000 3000 5000 7500 10000

abn.FP

mlik.FP

aic.FP

bic.FP

mdl.FP

Percentage of false postive

●

●

●●

●

●

●

●

●

●

●

●●●
●
●

●

●●

●●
●●
●

●

●

●
●

●

●

●

●●●

●

● ●

●
● ●

●

●

●

●●
●●
●

●●●

●

0.00

0.25

0.50

0.75

1.00

5 10 50 100 500 1000 2000 3000 5000 7500 10000

Number of Observations

abn.TP

mlik.TP

aic.TP

bic.TP

mdl.TP

Percentage of true positive

Figure 10: Comparison of score accuracy for marginal posterior likelihood (abn), maximum
likelihood (mlik), AIC, BIC and MDL for a given BN density in function of the number of
observations using accuracy, true positive, false positive and false negative metrics.

Random Forest’s variable importance that also supports multi-outcome formulation (Strobl,
Boulesteix, Zeileis, and Hothorn 2007).

A more theoretical limitation of the R package abn is the fact that the parameter priors
implemented are designed to be non-informative. Bayesian model selection algorithms with
uninformative priors will asymptotically always select the simpler model, regardless of the
data. This is known as Lindley’s paradox (Lindley 1957). A byproduct of more informative
priors is the ability to guide the posterior when the likelihood is hard to estimate. This
could be useful when there is data separation or in the case of paucity of data. Indeed, while
probably suitable in large datasets, flat priors can quickly turn troublesome when the data is

28 Additive Bayesian Network Modelling

not informative for a parameter of interest (Kratzer, Furrer, and Pittavino 2019a). From a
long-term perspective, it is certainly of interest to equip abn with weakly informative priors
whatever the distribution to incorporate and extend the R package abn.

One general limitation of the BN modelling approach and the R package abn is the strong
assumption of data independence coming from the regression framework used. Multiple ap-
proaches have been proposed to model temporal dynamics, such as Dynamic Bayesian Net-
work modelling (DBNs) (Murphy and Russell 2002), Temporal Nodes Bayesian Networks
(TNBNs) (Arroyo-Figueroa and Sucar 1999), VAR processes (Ahelegbey, Billio, and Casarin
2016) and state-space or hidden Markov models (Le Strat and Carrat 1999).

The two pillars of the statistical inference are the estimation of the effect size and the quan-
tification of the model uncertainties. In a regression context, this is achieved by reporting
regression coefficients and their confidence intervals (or sub-optimally using solely the coeffi-
cients’ p-values). This is done in ABN analysis when reporting the quantiles of the posterior
distribution of the coefficients. However, this is not fully satisfactory. Indeed, the uncertaint
quantification is performed conditionally to one model. A superior approach would be to
perform Bayesian model averaging, using MCMC over the possible structures. The computed
MCMC sample can be used to extract the arc probability of presence or absence. In a broader
perspective, it could be possible to compute the probability of any structural query over the
MCMC sample. This approach is implemented in the R package BiDAG (Suter and Kuipers
2018) or in the R package mcmcabn (Kratzer and Furrer 2019; Kratzer, Lewis, Willi, Meli,
Boretti, Hofmann-Lehmann, Torgerson, Furrer, and Hartnack 2020). The former is based
on an innovative order search, whereas the latter is based on a fully structural formulation.
However, known to be slower in convergence and less efficient with large networks than the
R package BiDAG, the R package mcmcabn has a fully transparent formulation regarding
the structural priors used. It is Which eases the interpretation of findings. Moreover, in
BN modeling applied to systems epidemiology due to the limited number of observations
that are usually possible from a financial, temporal or logistical perspective, integrating prior
knowledge into the inference scheme seems highly desirable.

7. Future developments

The case study showed that more exponential distributions should be implemented in order to
better grasp the diversity of variables of interest in systems epidemiology. Indeed, zero-inflated
variables are poorly represented by the Poisson distribution. A negative binomial would
probably be a better alternative. This present paper presents an analysis that takes advantage
of bootstrapping to decrease model variance. Figure 10 shows that information theoretic
scores perform differently depending on the context. Thus, there could be an opportunity to
construct a boosted score dedicated to the ABN methodology. This idea should be addressed
in a dedicated simulation study.

Author’s contributions

G.K. wrote and conceived the manuscript with support from A.C. and R.F. G.K. is author
of half of the functions implemented in the R package abn. G.K. performed the numerical
simulations and contributed to the analysis. G.K wrote the package’s documentation. F.I.L. is

Gilles Kratzer, Fraser Iain Lewis, Arianna Comin, Marta Pittavino, Reinhard Furrer 29

the original creator and author of half of the functions in the R package abn. F.I.L. provided
critical feedback and helped to shape the research project. A.C. identified the case study
dataset, performed the analysis and contributed to the interpretation of the findings. M.P.
contributed to the R package abn documentation. R.F. is the PhD supervisor of G.K. and
M.P. R.F. probed the R package abn and provided useful suggestions that lead to numerous
improvements on the package. R.F. provided input on the statistical framework, model
implementation and findings reporting. All authors revised the manuscript.

Computational details

The results in this paper were obtained using R 3.6.1 (2019-07-05) – “Action of the Toes”
with the abn 2.2 package. All computations were carried out using RStudio 1.2.5001. R

and all packages used are available from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/. RStudio is available at https://www.rstudio.com/. The
JAGS version is 4.3.0. The INLA version is 3.6.

A. DAGs simulation: more technical details

In order to simulate DAGs, the function simulateDag() generates triangular matrices with
user tuneble arc density. The node ordering is sampled from the node definition.

0.00

0.25

0.50

0.75

1.00

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized density of the DAGs

N
o
rm

a
liz

e
d
 m

a
x
im

u
m

 [
%

]

variable

n.arcs

mb.average

nh.average

parent.average

children.average

Density metrics of DAGs with 40 nodes (n=1000)

Figure 11: Normalized DAG structural metrics from simulated Bayesian networks of 40 nodes
with different arc densities

30 Additive Bayesian Network Modelling

In Figure 11, some normalized (i.e., divided by the maximum possible) DAGs structural
metrics are displayed: n.arcs is the number of arcs, mb.average is the average size of the
Markov blanket (the set of parents, children and co-parents), nh.average is the average number
of neighbours, parent.average is the average number of parents and children.average is the
average number of children in the BN. For each level of network complexity, 1000 BN with
40 nodes were simulated. The normalized distribution of the BN metrics computed with
infDag() is reported. As one can see in Figure 11, the only normalized metric that exhibits
non-linear behaviour with arc density is the Markov blanket.

B. Regression coefficients estimation: quality assurance check

The R package abn contains two functions to estimate the regression coefficent based on
two statistical paradigms: the MLE formulation with an IRLS estimation, and a Bayesian
formulation with diffuse priors estimated with INLA. Figure 12 shows a quality assurance
check of the implementations.

The Bayesian and MLE implementations are compared in Figure 12 to estimate the accuracy
of parameters. Two network densities, 20% and 80% of the possible arcs expressed, were
simulated 50 times. Then the regression coefficients were computed for different sample sizes
and the coefficient of variation of the given node as a proxy for the distribution’s variability.
As one can see in Figure 12, the error is measured as the maximum Root Mean Squared Error
(max RMSE) on a log-log scale. Both implementations produce very similar results even if
the estimation frameworks are very different.

C. Parametric bootstrapping: the R code

This section contains the R code needed to perform parametric bootstrapping described by
the pseudo-code in Algorithm 1.

R> vars <- colnames(abndata)

R>

R> # load data for jags

R> source("PostParams.R")

R>

R> # select nr. bootstrap samples to run

R> set.seed(123)

R>

R> # get 5000 random numbers to set different initial values

R> n <- sample(1:100000, 5000)

R>

R> # specify max number of parents based on previous search

R> max.par <- 4

R>

R> # Simulate data and run ABN on such dataset

R> for (i in 1:length(n)) {

R+ print(paste("/n Running simulation", i))

R+ # pick initials

Gilles Kratzer, Fraser Iain Lewis, Arianna Comin, Marta Pittavino, Reinhard Furrer 31

1.5 2.0 2.5 3.0 3.5

−
3

−
2

−
1

0
1

2
3

Low density BN: Bayesian estimation

Number of observations [log10]

C
o
e
f
o
f
V

a
r

[l
o
g
1
0
]

−0.268

−0.266

−0.264

−0.262

−0.260

−0.258

m
a
x
 R

M
S

E
 [
lo

g
1
0
]

1.5 2.0 2.5 3.0 3.5

−
3

−
2

−
1

0
1

2
3

Low density BN: MLE estimation

Number of observations [log10]
C

o
e
f
o
f
V

a
r

[l
o
g
1
0
]

−0.268

−0.266

−0.264

−0.262

−0.260

−0.258

m
a
x
 R

M
S

E
 [
lo

g
1
0
]

1.5 2.0 2.5 3.0 3.5

−
2

−
1

0
1

2
3

High density BN: Bayesian estimation

Number of observations [log10]

C
o
e
f
o
f
V

a
r

[l
o
g
1
0
]

0.88

0.89

0.90

0.91

0.92

m
a
x
 R

M
S

E
 [
lo

g
1
0
]

1.5 2.0 2.5 3.0 3.5

−
2

−
1

0
1

2
3

High density BN: MLE estimation

Number of observations [log10]

C
o
e
f
o
f
V

a
r

[l
o
g
1
0
]

0.8780

0.8785

0.8790

0.8795

0.8800

0.8805

m
a
x
 R

M
S

E
 [
lo

g
1
0
]

Figure 12: Comparison between Bayesian and MLE implementations to estimate regression
coefficients in an ABN framework. The panels show the maximum Root Mean Squared Error
(max RMSE) in function of the network density, the distribution variability and the sample
size.

R+ init <- list(.RNG.name = "base::Mersenne-Twister", .RNG.seed = n[i])

R+ # run model

R+ jj <- jags.model(file = "plot/model8vPois.bug", data = list(AR.p = AR.p,

R+ pneumS.p = pneumS.p, female.p = female.p, livdam.p = livdam.p,

R+ eggs.p = eggs.p, wormCount.p = wormCount.p, age.p = age.p,

R+ prec.age.p = prec.age.p, adg.p = adg.p, prec.adg.p = prec.adg.p),

R+ inits = init, n.chains = 1, n.adapt = 5000)

R+ # run more iterations

32 Additive Bayesian Network Modelling

R+ update(jj, 100000)

R+ # sample data (same size as original: 341) with a sampling

R+ # lag (20) to reduce autocorrelation

R+ samp <- coda.samples(jj, c("AR", "pneumS", "female", "livdam",

R+ "eggs", "wormCount", "age", "prec.age", "adg", "prec.adg"),

R+ n.iter = n.obs * 20, thin = 20)

R+ # build dataframe in the same shape as the original one

R+ dt.boot <- as.data.frame(as.matrix(samp))

R+ dt.boot <- dt.boot[, vars]

R+ # now coerce to factors if need be and set levels

R+ abndata <- as.data.frame(abndata)

R+ for (j in 1:length(vars)) {

R+ if (is.factor(abndata[, j])) {

R+ dt.boot[, j] <- as.factor(dt.boot[, j])

R+ levels(dt.boot[, j]) <- levels(abndata[, j])

R+ }

R+ }

R+ # Build a cache of all local computations

R+ mycache <- buildscorecache(data.df = dt.boot, data.dists = dist,

R+ dag.banned = banned, dag.retained = retain, max.parents = max.par)

R+ # Run the EXACT SEARCH

R+ mp.dag <- mostprobable(score.cache = mycache)

R+ fabn <- fitabn(object = mp.dag)

R+ # Save the results obtained

R+ save(mycache, mp.dag, fabn, dt.boot, file = sprintf("boot.%04d.RData",

R+ i))

R+ }

D. Numerical stability check: Parameter estimation

Once the trimmed DAG is obtained to keep robust structural features, we can extract the
marginal posterior densities. Indeed, a BN has a qualitative part (the structure) and a
quantitative part (parameters estimates). They are both equally important for interpreting
and reporting the findings. As the estimation is based on the Laplace approximation and
the R package abn does not rely on conjugate priors, a numerical check is performed. Figure
13 shows the marginal densities. The critical assumption is that the data contains sufficient
information to accurately estimate the density of individual parameters of the model. This is
a stronger requirement than simply being able to estimate an overall goodness of fit metric.
It could happen that INLA or the internal C code cannot estimate the densities with enough
numerical stability. Many user-tunable parameters can be supplie to fitabn() by providing
a list to the control argument.

The shape of the posterior parameter distributions looks satisfactory (see Figure 13).

References

Gilles Kratzer, Fraser Iain Lewis, Arianna Comin, Marta Pittavino, Reinhard Furrer 33

0.6 0.8 1.0 1.2 1.4 1.6 1.8

0
.0

1
.0

2
.0

3
.0

AR : AR|(Intercept)

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0
.0

1
.0

2
.0

AR : AR|age

−2.4 −2.0 −1.6 −1.2

0
.0

1
.0

2
.0

pneumS : pneumS|(Intercept)

−0.4 −0.2 0.0 0.2 0.4

0
1

2
3

female : female|(Intercept)

0.8 1.0 1.2 1.4 1.6 1.8

0
.0

1
.0

2
.0

livdam : livdam|(Intercept)

0 1 2 3 4

0
.0

0
.2

0
.4

0
.6

0
.8

livdam : livdam|eggs

−1.8 −1.4 −1.0

0
.0

1
.0

2
.0

3
.0

eggs : eggs|(Intercept)

0.2 0.4 0.6 0.8 1.0 1.2

0
.0

1
.0

2
.0

eggs : eggs|adg

−0.8 −0.6 −0.4 −0.2 0.0

0
1

2
3

4

wormCount : wormCount|(Intercept)

−0.2 0.0 0.2 0.4 0.6

0
1

2
3

wormCount : wormCount|AR

0.8 1.0 1.2 1.4 1.6

0
1

2
3

wormCount : wormCount|eggs

−0.6 −0.4 −0.2 0.0 0.2

0
1

2
3

4

wormCount : wormCount|age

−0.4 −0.2 0.0 0.2

0
1

2
3

4

wormCount : wormCount|adg

1.0 1.2 1.4 1.6 1.8 2.0

0
.0

1
.0

2
.0

3
.0

wormCount : wormCount|precision

−0.5 −0.3 −0.1 0.1

0
1

2
3

4
5

age : age|(Intercept)

0.0 0.2 0.4 0.6 0.8

0
1

2
3

age : age|female

0.8 0.9 1.0 1.1 1.2 1.3 1.4

0
1

2
3

4
5

age : age|precision

−0.10 0.00 0.05 0.10

0
5

1
0

1
5

adg : adg|(Intercept)

−0.95 −0.85 −0.75

0
5

1
0

1
5

adg : adg|age

3.0 3.5 4.0 4.5 5.0 5.5

0
.0

0
.4

0
.8

1
.2

adg : adg|precision

Figure 13: Marginal densities of model parameters for the adg data

Ahelegbey DF, Billio M, Casarin R (2016). “Bayesian Graphical Models for Structural Vector
Autoregressive Processes.” Journal of Applied Econometrics, 31(2), 357–386.

Arroyo-Figueroa G, Sucar LE (1999). “A Temporal Bayesian Network for Diagnosis and Pre-
diction.” In Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence,
pp. 13–20. Morgan Kaufmann Publishers Inc.

Battiti R (1994). “Using Mutual Information for Selecting Features in Supervised Neural Net
Learning.” IEEE Transactions on Neural Networks, 5(4), 537–550.

Belsley DA, Kuh E, Welsch RE (2005). Regression diagnostics: Identifying influential data
and sources of collinearity, volume 571. John Wiley & Sons.

Boerlage B (1992). Link Strength in Bayesian Networks. Ph.D. thesis, University of British
Columbia.

Bøttcher SG, Dethlefsen C, et al. (2003). deal: A Package for Learning Bayesian Networks.
Department of Mathematical Sciences, Aalborg University.

Bouckaert RR (2008). “Bayesian Network Classifiers in Weka for Version 3-5-7.” Artificial
Intelligence Tools, 11(3), 369–387.

Breslow NE, Clayton DG (1993). “Approximate Inference in Generalized Linear Mixed Mod-
els.” Journal of the American Statistical Association, 88(421), 9–25.

34 Additive Bayesian Network Modelling

Comin A, Jeremiasson A, Kratzer G, Keeling L (2019). “Revealing the Structure of the
Associations Between Housing System, Facilities, Management and Welfare of Commercial
Laying Hens Using Additive Bayesian Networks.” Preventive Veterinary Medicine, 164,
23–32.

Consonni G, Rocca LL (2012). “Objective Bayes Factors for Gaussian Directed Acyclic Graph-
ical Models.” Scandinavian Journal of Statistics, 39(4), 743–756.

Cornet D, Sierra J, Tournebize R, Gabrielle B, Lewis FI (2016). “Bayesian Network Mod-
eling of Early Growth Stages Explains Yam Interplant Yield Variability and Allows for
Agronomic Improvements in West Africa.” European Journal of Agronomy, 75, 80–88.

Daly R, Shen Q, Aitken S (2011). “Learning Bayesian Networks: Approaches and Issues.”
The Knowledge Engineering Review, 26(2), 99–157.

de Jongh M, Druzdzel MJ (2009). “A comparison of structural distance measures for causal
Bayesian network models.” Recent Advances in Intelligent Information Systems, Challeng-
ing Problems of Science, Computer Science series, pp. 443–456.

Dethlefsen C, Højsgaard S, et al. (2005). “A Common Platform for Graphical Models in R:
The gRbase Package.” Journal of Statistical Software, 14(17), 1–12.

Dohoo IR, Martin W, Stryhn H, et al. (2003). Veterinary Epidemiologic Research. V413
DOHv. AVC Incorporated Charlottetown, Canada.

Ebert-Uphoff I (2009). “Tutorial on How to Measure Link Strengths in Discrete Bayesian
Networks.” URL http://hdl.handle.net/1853/29804.

Faraway JJ (2016). Extending the Linear Model with R: Generalized Linear, Mixed Effects
and Nonparametric Regression Models. CRC Press.

Firestone SM, Lewis FI, Schemann K, Ward MP, Toribio JAL, Taylor MR, Dhand NK (2014).
“Applying Bayesian Network Modelling to Understand the Links Between On-Farm Biose-
curity Practice During the 2007 Equine Influenza Outbreak and Horse Managers’ Percep-
tions of a Subsequent Outbreak.” Preventive Veterinary Medicine, 116(3), 243–251.

Friedman N, Goldszmidt M, Wyner A (1999). “Data Analysis with Bayesian Networks: A
Bootstrap Approach.” In Proceedings of the Fifteenth Conference on Uncertainty in Artifi-
cial Intelligence, pp. 196–205. Morgan Kaufmann Publishers Inc.

Hair JF, Black WC, Babin BJ, Anderson RE, Tatham RL, et al. (1998). Multivariate Data
Analysis, volume 5. Prentice Hall Upper Saddle River, NJ.

Hansen KD, Gentry J, Long L, Gentleman R, Falcon S, Hahne F, Sarkar D (2019). Rgraphviz:
Provides plotting capabilities for R graph objects. ProglangR package version 2.28.0, URL
https://bioconductor.org/packages/Rgraphviz/.

Hartnack S, Odoch T, Kratzer G, Furrer R, Wasteson Y, L’Abée-Lund TM, Skjerve E (2019).
“Additive Bayesian Networks for Antimicrobial Resistance and Potential Risk Factors in
Non-Typhoidal Salmonella Isolates from Layer Hens in Uganda.” BMC Veterinary Research,
15(1), 212.

Gilles Kratzer, Fraser Iain Lewis, Arianna Comin, Marta Pittavino, Reinhard Furrer 35

Hartnack S, Springer S, Pittavino M, Grimm H (2016). “Attitudes of Austrian Veterinarians
Towards Euthanasia in Small Animal Practice: Impacts of Age and Gender on Views on
Euthanasia.” BMC Veterinary Research, 12(1), 26.

Hasan A, Wang Z, Mahani A (2016). “Fast Estimation of Multinomial Logit Models: R

Package mnlogit.” Journal of Statistical Software, 75(3), 1–24. ISSN 1548-7660. doi:

10.18637/jss.v075.i03. URL https://www.jstatsoft.org/v075/i03.

Heckerman D, Geiger D, Chickering DM (1995). “Learning Bayesian Networks: The combi-
nation of Knowledge and Statistical Data.” Machine Learning, 20(3), 197–243.

Højsgaard S, et al. (2012). “Graphical Independence Networks with the gRain Package for
R.” Journal of Statistical Software, 46(10), 1–26.

Hornik K, Buchta C, Zeileis A (2009). “Open-Source Machine Learning: R Meets Weka.”
Computational Statistics, 24(2), 225–232.

Iannone R (2019). DiagrammeR: Graph/Network Visualization. R Package version 1.0.1,
URL https://CRAN.R-project.org/package=DiagrammeR.

Kalisch M, Mächler M, Colombo D, Maathuis MH, Bühlmann P (2012). “Causal Inference
Using Graphical Models with the R Package pcalg.” Journal of Statistical Software, 47(11),
1–26.

Koivisto M, Sood K (2004). “Exact Bayesian Structure Discovery in Bayesian Networks.”
Journal of Machine Learning Research, 5(May), 549–573.

Kratzer G, Furrer R (2018a). varrank: an R package for variable ranking based on mutual
information with applications to observed systemic datasets. R package version 0.2, URL
https://CRAN.R-project.org/package=varrank.

Kratzer G, Furrer R (2018b). “varrank: An R Package for Variable Ranking Based on
Mutual Information with Applications to Observed Systemic Datasets.” arXiv preprint
arXiv:1804.07134.

Kratzer G, Furrer R (2019). “Is a Single Unique Bayesian Network Enough to Accurately
Represent Your Data?” arXiv preprint arXiv:1902.06641.

Kratzer G, Furrer R, Pittavino M (2019a). “Comparison between Suitable Priors for Additive
Bayesian Networks.” In R Argiento, D Durante, S Wade (eds.), Bayesian Statistics and
New Generation. Springer-Verlag.

Kratzer G, Lewis FI, Willi B, Meli ML, Boretti FS, Hofmann-Lehmann R, Torgerson P, Furrer
R, Hartnack S (2020). “Bayesian Network Modeling Applied to Feline Calicivirus Infection
Among Cats in Switzerland.” Frontiers in Veterinary Science, 7, 73.

Kratzer G, Pittavino M, Lewis F, Furrer R (2019b). Abn: An R Package for Modelling
Multivariate Data Using Additive Bayesian Networks. R package version 2.2, URL https:

//CRAN.R-project.org/package=abn.

Lauritzen S, Spiegelhalter DJ (1988). “Local Computations with Probabilities on Graphical
Structures and Their Application to Expert Systems (With Discussion).” Journal of the
Royal Statistical Society, Series B, 50, 157–224.

36 Additive Bayesian Network Modelling

Le Strat Y, Carrat F (1999). “Monitoring Epidemiologic Surveillance Data Using Hidden
Markov Models.” Statistics in Medicine, 18(24), 3463–3478.

Lewis FI, Ward MP (2013). “Improving Epidemiologic Data Analyses Through Multivariate
Regression Modelling.” Emerging Themes in Epidemiology, 10(1), 4.

Lindley DV (1957). “A Statistical Paradox.” Biometrika, 44(1/2), 187–192.

Ludwig A, Berthiaume P, Boerlin P, Gow S, Léger D, Lewis FI (2013). “Identifying As-
sociations in Escherichia Coli Antimicrobial Resistance Patterns Using Additive Bayesian
Networks.” Preventive Veterinary Medicine, 110(1), 64–75.

MacKay DJ (1992). “Bayesian Interpolation.” Neural Computation, 4(3), 415–447.

McCormick B (2014). “Frequent Symptomatic or Asymptomatic Infections May Have Long-
Term Consequences on Growth and Cognitive Development.” In Old Herborn University
Seminar Monographs, pp. 23–39. Institute for Microbiology und Biochemistry Herborn,
Germany.

McCormick B, Sanchez-Vazquez M, Lewis F (2013). “Using Bayesian Networks to Explore
the Role of Weather as a Potential Determinant of Disease in Pigs.” Preventive Veterinary
Medicine, 110(1), 54–63.

Murphy K, et al. (2001). “The Bayes Net Toolbox for MATLAB.” Computing Science and
Statistics, 33(2), 1024–1034.

Murphy KP, Russell S (2002). “Dynamic Bayesian Networks: Representation, Inference and
Learning.”

Pearl J (1985). Bayesian Networks: A Model for Self-Activated Memory for Evidential Rea-
soning. University of California, Los Angeles. Computer Science Department.

Pitman EJG (1936). “Sufficient Statistics and Intrinsic Accuracy.” Mathematical Proceedings
of the Cambridge Philosophical Society, 32(4), 567–579.

Pittavino M, Dreyfus A, Heuer C, Benschop J, Wilson P, Collins-Emerson J, Torgerson P, Fur-
rer R (2017). “Comparison Between Generalized Linear Modelling and Additive Bayesian
Network; Identification of Factors Associated with the Incidence of Antibodies Against
Leptospira Interrogans SV Pomona in Meat Workers in New Zealand.” Acta Tropica, 173,
191–199.

Plummer M (2018). rjags: Bayesian Graphical Models using MCMC. R Package version 4.9,
URL https://CRAN.R-project.org/package=rjags.

Plummer M, et al. (2003). “Jags: A Program for Analysis of Bayesian Graphical Models
Using Gibbs Sampling.” In Proceedings of the 3rd International Workshop on Distributed
Statistical Computing, volume 124. Vienna, Austria.

R Core Team (2017). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Robinson RW (1973). “Counting Labeled Acyclic Digraphs, New Directions in the Theory of
Graphs (Proc. Third Ann Arbor Conf., Univ. Michigan, Ann Arbor, Mich., 1971).”

Gilles Kratzer, Fraser Iain Lewis, Arianna Comin, Marta Pittavino, Reinhard Furrer 37

Robinson RW (1977). “Counting Unlabeled Acyclic Digraphs.” In Combinatorial Mathematics
V, pp. 28–43. Springer-Verlag.

Ruchti S, Kratzer G, Furrer R, Hartnack S, Würbel H, Gebhardt-Henrich SG (2019). “Pro-
gression and Risk Factors of Pododermatitis in Part-Time Group Housed Rabbit Does in
Switzerland.” Preventive Veterinary Medicine, 166, 56–64.

Ruchti S, Meier AR, Würbel H, Kratzer G, Gebhardt-Henrich SG, Hartnack S (2018). “Podo-
dermatitis in Group Housed Rabbit Does in Switzerland – Prevalence, Severity and Risk
Factors.” Preventive Veterinary Medicine, 158, 114–121.

Rue H, Martino S, Chopin N (2009). “Approximate Bayesian Inference for Latent Gaus-
sian Models by Using Integrated Nested Laplace Approximations.” Journal of the Royal
Statistical Society: Series B, 71(2), 319–392.

Scutari M (2010). “Learning Bayesian Networks with the bnlearn R Package.” Journal of
Statistical Software, 35(3), 1–22.

Scutari M (2018). “Dirichlet Bayesian Network Scores and the Maximum Relative Entropy
Principle.” Behaviormetrika, 45(2), 337–362.

Spirtes P (2001). “An Anytime Algorithm for Causal Inference.” In AISTATS. MIT Press.

Stehman SV (1997). “Selecting and interpreting measures of thematic classification accuracy.”
Remote sensing of Environment, 62(1), 77–89.

Strobl C, Boulesteix AL, Zeileis A, Hothorn T (2007). “Bias in Random Forest Variable
Importance Measures: Illustrations, Sources and a Solution.” BMC Bioinformatics, 8(1),
25.

Suter P, Kuipers J (2018). BiDAG: Bayesian Inference for Directed Acyclic Graphs (BiDAG).
R package version 1.1.2, URL https://CRAN.R-project.org/package=BiDAG.

van Smeden M, de Groot JA, Moons KG, Collins GS, Altman DG, Eijkemans MJ, Reitsma JB
(2016). “No Rationale for 1 Variable per 10 Events Criterion for Binary Logistic Regression
Analysis.” BMC Medical Research Methodology, 16(1), 163.

Venables W, Ripley B (2002). “Modern Applied Statistics with S. Springer, New York.”

Verma T, Pearl J (1988). Influence Diagrams and D-Separation. UCLA, Computer Science
Department.

Zou Y, Roos T (2017). “On Model Selection, Bayesian Networks, and the Fisher Information
Integral.” New Generation Computing, 35(1), 5–27.

Affiliation:

Gilles Kratzer
Zurich University
Department of Mathematics, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland

38 Additive Bayesian Network Modelling

E-mail: gilles.kratzer@math.uzh.ch

URL: http://r-bayesian-networks.org/

	Introduction
	Motivating example
	Alternative R packages

	Methodological background
	Bayesian Network
	Additive Bayesian Network formulation
	Learning algorithm

	The R Package abn
	Set of core functions
	Defining a DAG
	Ancillary functions for analysis
	Ancillary functions for simulation

	Case study
	Data description and library loading
	Data Preparation and package loading
	Structure search
	Control for over-fitting
	Parametric bootstrapping
	Control for clustering
	Adjustment at the regression phase
	Adjustment at the bootstrapping phase
	Adjustment at the learning phase

	Accounting for uncertainty in BN models
	Presentation of the results

	Simulation study
	Comparison of score accuracy

	Summary and discussion
	Future developments
	Author's contributions
	Computational details
	DAGs simulation: more technical details
	Regression coefficients estimation: quality assurance check
	Parametric bootstrapping: the R code
	Numerical stability check: Parameter estimation

