We generated three samples, with \(n=200\) observations each, from a
2-dimensional Gaussian distributions with mean vectors \(\mu_1 = (0, \frac{\sqrt{3}}{3})\), \({\mu}_2 = (-\frac{1}{2},
-\frac{\sqrt{3}}{6})\) and \(\mu_3 =
(\frac{1}{2}, -\frac{\sqrt{3}}{6})\), and the Identity matrix as
covariance matrix. In this situation, the generated samples are well
separated, following different Gaussian distributions, i.e. \(X_1 \sim N_2(\mu_1, I)\), \(X_2 \sim N_2(\mu_2, I)\) and \(X_3 \sim N_2(\mu_3, I)\)}. The vector
y
indicates the membership to groups.
library(mvtnorm)
library(QuadratiK)
sizes <- rep(200,3)
eps <- 1
set.seed(2468)
x1 <- rmvnorm(sizes[1], mean = c(0,sqrt(3)*eps/3))
x2 <- rmvnorm(sizes[2], mean = c(-eps/2,-sqrt(3)*eps/6))
x3 <- rmvnorm(sizes[3], mean = c(eps/2,-sqrt(3)*eps/6))
x <- rbind(x1, x2, x3)
y <- as.factor(rep(c(1,2,3), times=sizes))
Recall that the computed test statistics correspond to the omnibus tests.
##
## Kernel-based quadratic distance k-sample test
## U-statistics Dn Trace
## ------------------------------------------------
## Test Statistic: 11.844 38.6817
## Critical Value: 0.5623288 1.836868
## H0 is rejected: TRUE TRUE
## CV method: subsampling
## Selected tuning parameter h: 1.5
When the \(k\)-sample test is
performed, the summary
method on the kb.test
object returns the results of the tests together with the standard
descriptive statistics for each variable computed, overall, and with
respect to the provided groups.
##
## Kernel-based quadratic distance k-sample test
## Statistic Test_Statistic Critical_Value Reject_H0
## 1 Dn 11.8440 0.5623288 TRUE
## 2 Trace 38.6817 1.8368685 TRUE
## [[1]]
## Group 1 Group 2 Group 3 Overall
## mean -0.005959147 -0.5370127 0.5442058 0.0004113282
## sd 0.997319811 0.9583059 1.0374834 1.0900980006
## median -0.028244038 -0.5477108 0.5297478 -0.0239486027
## IQR 1.478884929 1.4105832 1.4234532 1.5377418198
## min -2.860006689 -3.1869808 -2.2119189 -3.1869807848
## max 2.151784802 2.0647648 3.1580700 3.1580700259
##
## [[2]]
## Group 1 Group 2 Group 3 Overall
## mean 0.4935364 -0.4042219 -0.2461729 -0.05228613
## sd 1.0449582 1.0411639 1.0474989 1.11391575
## median 0.5281635 -0.4325995 -0.2950922 -0.09520111
## IQR 1.4001089 1.4662111 1.2867345 1.48444495
## min -2.6448703 -2.8786352 -3.4932849 -3.49328492
## max 3.0792766 2.6788424 2.8290722 3.07927659
If a value of \(h\) is not provided,
the function automatically performs the function
select_h
.
For a more accurate search of the tuning parameter, the function
select_h
can be used.This function needs the input
x
and y
as the function kb.test
for the \(k\)-sample problem.
The select_h
function will also generate a figure
displaying the obtained power versus the considered \(h\), for each value of skewness alternative
\(\delta\) considered.