
Doing a basic team ranking using match data

October 22, 2013

This shows how to use a comma-delimited file of match data to get a team ranking and then to predict
tournaments. The example uses match and team data downloaded from www.lastplanetranking.blogspot.com.

1 Load the data

The ranking function needs a dataframe. To get one, we will use the create.fbRanks.dataframes() function
which reads in a comma-delimited match file, does error checking and creates a dataframe. But you can create
a dataframe any way you want.

We will start by loading the example .csv file into the current workspace.

pkgpath=find.package("fbRanks")

file.loc=paste(pkgpath,"\\doc\\scores-web.csv",sep="")

file.copy(file.loc,".")

temp=create.fbRanks.dataframes(scores.file="scores-web.csv")

Alert: teams info file was not passed in.

Will construct one from the scores data frame but teams in the scores file must use a unique name.

Alert: teams resolver was not passed in.

Will construct one from the team info data frame.

1

http://www.lastplanetranking.blogspot.com/

scores=temp$scores

In the example scores file, each team has a unique name thus a ”team resolver” file is not needed. A ”team
resolver”file is needed when our match data has one team using different names, which will happen if you have
data from different tournaments and leagues. The example scores file already has the names standardized
for you. This shows the first few lines of the example match dataframe. The example scores dataframe also
has venue information and surface information (try head(scores)) but only the columns shown below are
necessary for a basic ranking.

head(scores[,1:5])

date home.team home.score away.team away.score

1 2012-05-25 PacNW Blue B00 0 Normandy Park FC White B00 8

2 2012-05-25 WA Rush Swoosh B00 1 PacNW Maroon B00 7

3 2012-05-26 Crossfire Premier B B00 12 WA Rush Swoosh B00 0

4 2012-05-26 Normandy Park FC White B00 4 WA Rush Nike B00 0

5 2012-05-26 PacNW Maroon B00 1 Crossfire Premier B B00 8

6 2012-05-26 WA Rush Nike B00 10 PacNW Blue B00 1

2 Rank the teams

To do just a basic ranking, the rank.teams() function requires a dataframe with date, home.team, home.score,
away.team, and away.score columns that are respectively class date, character, numeric, character, and nu-
meric.

#get the ranks without any explantory variables

ranks1=rank.teams(scores=scores)

We can print the ranks. The output is not shown since there are 200+ teams.

2

#print all ranks

print(ranks1)

The problem with not using a team file is that we have no information on the teams, like the region or
the age. Let’s add a team file which has the region for each team. Again this is a file downloaded from
www.lastplanetranking.blogspot.com. The file has a variety of information about the teams.

temp=create.fbRanks.dataframes(scores.file="scores-web.csv", teams.file="teams-web.csv")

Alert: teams resolver was not passed in.

Will construct one from the team info data frame.

scores=temp$scores

teams=temp$teams

head(teams[,c("name","age","region","fall.league")])

name age region fall.league

1 Coastal FC 2000B 2000B BC BCSPL U13fin

2 Coquitlam Metro Ford Millennium 2000B 2000B BC BCSPL U13fin

3 Fusion FC 2000B 2000B BC BCSPL U13fin

4 KSYSA Warriors Fogal 2001B 2001B BC

5 Magnuson Ford Mariners FC 2000B 2000B BC BCSPL U13fin

6 Mountain United 2000B 2000B BC BCSPL U13fin

We can fit again, this time with a team resolver file:

#get the ranks without any explantory variables

ranks2=rank.teams(scores=scores, teams=teams)

Now we can print using the columns in the teams dataframe. Show the ranks for teams in the fall RCL
Division 1 U12 league.

3

http://www.lastplanetranking.blogspot.com/

print(ranks2, fall.league="RCL D1 U12")

Team Rankings based on matches 1900-05-01 to 2100-06-01

fall.league: RCL D1 U12

team total attack defense n.games fall.league

1 WPFC Black B00 6.70 7.72 13.48 32 RCL D1 U12

2 Eastside FC Red B00 6.18 7.59 9.55 29 RCL D1 U12

3 Seattle United Copa B00 6.15 9.36 7.58 20 RCL D1 U12

4 FC Alliance A B00 5.01 7.29 4.41 31 RCL D1 U12

5 Crossfire Premier B B00 4.79 7.94 3.48 40 RCL D1 U12

6 SSC Shadow A B00 4.20 6.32 2.90 25 RCL D1 U12

7 WA Rush Nike B00 4.08 5.28 3.21 34 RCL D1 U12

8 Crossfire Premier A B01 3.94 5.98 2.56 22 RCL D1 U12

By default it is scaling the total column by the median total for all teams in the database (not just in RCL D1
U12). What you scale to does not really matter. It is the difference in total strength (difference in the values
in the total columns of two teams) that tells you the relative strength. The meaning of the total column is

that 2diff, where diff=(total strength team A - total strength team B), is the expected number of goals by
team A divided the expect number of goals by team B in a match up between these two teams. So if the
difference in total strength is 1 goal, then team A scores twice as many goals as team B, so for every 2 goals
scored by team A, team B scores (on average) 1 when team A plays team B. If the difference is 2, team A
scores 22 = 4 times as many goals. The scaling constant c, which is (total + c), falls out when you take the
difference in total strength between teams so only matters from a presentation perspective.

3 Ranking with explanatory variables

If we want to include explanatory variables in our model, then our scores dataframe also needs columns for the
game-specific explanatory variables. In this example, I added surface and ’advantage’ to the scores dataframe.
Surface specifies whether the game was played on turf, grass or unknown and advantage specifies home, away
or neutral advantage.

4

names(scores)

[1] "date" "home.team" "home.score" "away.team" "away.score" "venue" "home.adv"

[8] "away.adv" "surface"

The explanatory variables are specified in the rank.teams call using add=. To include the surface information
in our model, add add="surface" to the rank.teams call.

#get the ranks with surface effect; note surface must be a column

#in scores (or teams) dataframe for this to work

ranks3=rank.teams(scores=scores,teams=teams,add="surface")

Note, the explanatory variables should be specified as character or numeric values and not as factors.
Explanatory variables that affect the home team score differently than the away team score must be

specified with two columns in the scores dataframe. One is called ”home.xyz” and the other is ”away.xyz”.
For example, if you wanted to look at the effect of the goalkeeper jersey color on scores (which interestingly
has been shown to affect the goals scored against), you could have a column called ”home.GKcolor” and
”away.GKcolor”. Or if you wanted to look at whether the distance teams much travel affects the scores, you
could have a column called ”home.traveldist” and ”away.traveldist”. However, the most common home/away
explanatory variable is simply whether the team is home or away. In the scores dataframe, I use columns
”home.adv” and ”away.adv” to specify the advantage the team has, which will be either ”home”, ”away” or
”neutral”.

To add an explanatory variable that affects the home and away teams differently, add only the part after
”home.” and ”away.” to the add= vector in the rank.teams call. Here’s how to add surface and advantage to
the B00 ranks:

ranks4=rank.teams(scores=scores,teams=teams,add=c("surface","adv"))

Slightly fewer goals per game are scored on turf,

coef(ranks4fitcluster.1)["surface.fTurf"]

5

surface.fTurf

-0.2151422

and the home team has an advantage, in this case small.

coef(ranks4fitcluster.1)["adv.fhome"]

adv.fhome

0.1215774

What is the cluster.1 bit? Clusters are the groups of teams that are completely connected (there is a
path from every team to every other team). You can have multiple clusters in your dataset and rank.teams

will rank each separately but you will not be able to compare ranks across clusters. The fits are named
cluster.1, cluster.2, etc. In this example, we have only one cluster since all the teams in this scores dataframe
are interconnected.

4 Predicting and simulating matches

We can easily predict matches and tournaments. First let’s fit a model using just the summer data.

#Drop the home/away advantage since all the summer games are neutral

#Add max.date so tell the function to only use matches up to max.date

ranks.summer=rank.teams(scores=scores,teams=teams,add=c("surface"), max.date="2012-9-5")

Now we can use that model to simulate the outcome of the RCL D1 fall league:

simulate(ranks.summer, venue="RCL D1")

1st 2nd 3rd 4th 5th 6th 7th 8th

FC Alliance A B00 0 0 1 6 30 32 21 10

Crossfire Premier B B00 3 10 23 48 11 3 1 0

6

WPFC Black B00 22 39 27 11 1 0 0 0

Eastside FC Red B00 11 27 38 21 3 1 0 0

Seattle United Copa B00 64 24 9 2 0 0 0 0

WA Rush Nike B00 0 0 0 2 14 25 35 24

SSC Shadow A B00 0 0 0 0 4 11 25 59

Crossfire Premier A B01 0 0 2 9 36 29 18 7

We can also predict the match outcomes for RCL D1 games on the 16th of September. Note the format
for a date and that it is wrapped in as.Date().

predict(ranks.summer, venue="RCL D1", date=as.Date("2012-09-16"))

Predicted Match Results for 1900-05-01 to 2100-06-01

Model based on data from 1900-05-01 to 2012-09-05

2012-09-16 Crossfire Premier B B00 vs Crossfire Premier A B01, HW 61%, AW 21%, T 18%, pred score 2.6-1.5 actual: HW (3-2)

2012-09-16 WPFC Black B00 vs WA Rush Nike B00, HW 82%, AW 5%, T 13%, pred score 2.6-0.5 actual: HW (3-0)

We can construct ”fantasy” tournaments by making a dataframe with NaN for the score. The columns
date, home.team, home.score, away.team, away.score must be present. The date column must be there but
will be ignored. Also, any explanatory variables must be present.

Let’s have a fantasy tournament of the three all-city teams in the Seattle United Club and the top Seattle
United regional team.

fantasy.teams=c("Seattle United Copa B00","Seattle United Tango B00",

"Seattle United Samba B00","Seattle United S Black B00")

home.team=combn(fantasy.teams,2)[1,]

away.team=combn(fantasy.teams,2)[2,]

fantasy.games=data.frame(

date="2013-1-1",

home.team=home.team,

7

home.score=NaN,

away.team=away.team,

away.score=NaN, surface="Grass",

home.adv="neutral", away.adv="neutral")

fantasy.games is now a dataframe with an imaginary bracket with 4 teams and each team playing 3
games. Our imaginary tournament is on grass.

simulate(ranks4, newdata=fantasy.games, points.rule="tournament10pt")

1st 2nd 3rd 4th

Seattle United Copa B00 95 5 0 0

Seattle United Tango B00 5 86 9 1

Seattle United Samba B00 0 7 58 35

Seattle United S Black B00 0 3 33 64

5 Multiple clusters of teams

If you do not have a path from every team to every other team in your database, then you will have some
groups of teams that are in different ’clusters’. Let’s say you have six teams. A played B, B played C, C
played D, and E played F. There is a ’path’ from A to D (through the B-C and C-D games) but no path from
E or F to A, B, C or D. So A,B,C,D is one ’cluster’ and E,F is another. We can rank all the teams within
a cluster to each other, but we cannot rank one cluster against another. The fbRanks package will recognize
the different clusters and print the ranks separately. However, the predict and simulate functions expect
fbRanks objects (the output from a rank.teams call) with only one cluster.

8

	Load the data
	Rank the teams
	Ranking with explanatory variables
	Predicting and simulating matches
	Multiple clusters of teams

