FedIRT: Federated Item Response Theory Models

Integrate Item Response Theory (IRT) and Federated Learning to estimate traditional IRT models, including the 2-Parameter Logistic (2PL) and the Graded Response Models, with enhanced privacy. It allows for the estimation in a distributed manner without compromising accuracy. A user-friendly 'shiny' application is included. For more details, see Biying Zhou, Feng Ji (2024) "'FedIRT': An R package and 'shiny' app for estimating federated item response theory models" <https://github.com/Feng-Ji-Lab/FedIRT/blob/main/paper/paper.pdf>.

Version: 0.1.0
Depends: R (≥ 3.5.0)
Imports: purrr, pracma, shiny, httr, callr, DT, ggplot2, shinyjs
Suggests: testthat (≥ 3.0.0)
Published: 2024-04-10
DOI: 10.32614/CRAN.package.FedIRT
Author: Biying Zhou [cre], Feng Ji [aut]
Maintainer: Biying Zhou <zby.zhou at mail.utoronto.ca>
License: MIT + file LICENSE
NeedsCompilation: no
Materials: README
CRAN checks: FedIRT results

Documentation:

Reference manual: FedIRT.pdf

Downloads:

Package source: FedIRT_0.1.0.tar.gz
Windows binaries: r-devel: FedIRT_0.1.0.zip, r-release: FedIRT_0.1.0.zip, r-oldrel: FedIRT_0.1.0.zip
macOS binaries: r-release (arm64): FedIRT_0.1.0.tgz, r-oldrel (arm64): FedIRT_0.1.0.tgz, r-release (x86_64): FedIRT_0.1.0.tgz, r-oldrel (x86_64): FedIRT_0.1.0.tgz

Linking:

Please use the canonical form https://CRAN.R-project.org/package=FedIRT to link to this page.