Perform robust inference based on applying Fast and Robust Bootstrap on robust estimators (Van Aelst and Willems (2013) <doi:10.18637/jss.v053.i03>). This method constitutes an alternative to ordinary bootstrap or asymptotic inference. procedures when using robust estimators such as S-, MM- or GS-estimators. The available methods are multivariate regression, principal component analysis and one-sample and two-sample Hotelling tests. It provides both the robust point estimates and uncertainty measures based on the fast and robust bootstrap.
Version: | 2.0-1 |
Depends: | R (≥ 2.10) |
Imports: | rrcov, corpcor |
Suggests: | robustbase |
Published: | 2024-10-07 |
DOI: | 10.32614/CRAN.package.FRB |
Author: | Ella Roelant [aut], Stefan Van Aelst [aut], Gert Willems [aut], Valentin Todorov [cre] (<https://orcid.org/0000-0003-4215-0245>) |
Maintainer: | Valentin Todorov <valentin.todorov at chello.at> |
License: | GPL (≥ 3) |
NeedsCompilation: | no |
Citation: | FRB citation info |
Materials: | NEWS |
CRAN checks: | FRB results |
Reference manual: | FRB.pdf |
Package source: | FRB_2.0-1.tar.gz |
Windows binaries: | r-devel: FRB_2.0-1.zip, r-release: FRB_2.0-1.zip, r-oldrel: FRB_2.0-1.zip |
macOS binaries: | r-release (arm64): FRB_2.0-1.tgz, r-oldrel (arm64): FRB_2.0-1.tgz, r-release (x86_64): FRB_2.0-1.tgz, r-oldrel (x86_64): FRB_2.0-1.tgz |
Old sources: | FRB archive |
Please use the canonical form https://CRAN.R-project.org/package=FRB to link to this page.